首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bisphenol A (BPA), which could disrupt endocrine system and cause cancer, has been considered as an endocrine disruptor. Therefore, it is very important and necessary to develop a sensitive and selective method for detection of BPA. Herein, nitrogen-doped graphene sheets (N-GS) and chitosan (CS) were used to prepare electrochemical BPA sensor. Compared with graphene, N-GS has favorable electron transfer ability and electrocatalytic property, which could enhance the response signal towards BPA. CS also exhibits excellent film forming ability and improves the electrochemical behavior of N-GS modified electrode. The sensor exhibits a sensitive response to BPA in the range of 1.0 × 10−8–1.3 × 10−6 mol L−1 with a low detection limit of 5.0 × 10−9 mol L−1 under the optimal conditions. Finally, this proposed sensor was successfully employed to determine BPA in water samples with satisfactory results.  相似文献   

2.
Nanoporous gold (NPG) with uniform pore sizes and ligaments was prepared by a simple dealloying method. The as-prepared NPG samples were used as the working electrodes to investigate the redox behavior of p-nitrophenol (p-NP) by cyclic voltammetry (CV). Quite different from the voltammetric behavior of polycrystalline gold electrode, the CV profiles of NPG display a pair of nearly symmetric redox waves which are ascribed to the reaction of 4-(hydroxyamino)phenol/4-nitrosophenol couple. It is interesting that this pair of redox waves are hardly affected by the isomers of p-NP; and moreover, their peak areas are linear with the concentration of p-NP in the range from 0.25 to 10 mg dm?3. Because of high sensitivity and good selectivity, NPG is expected to act as a promising electrochemical sensor material for detecting trace p-NP in wastewaters.  相似文献   

3.
合成了含双醛基的离子液体,此离子液体一端的醛基与修饰在电极表面的氨基发生共价键作用,将离子液体修饰在电极表面,另一端的醛基可用来固定抗体,构建电化学免疫传感器,实现对心肌肌钙蛋白I(cTnI)的检测。离子液体通过共价键作用固定在电极表面,不仅减少了从电极表面向检测溶液的渗透,提高传感器的稳定性,而且还可以直接固定抗体,不需要使用其他交联试剂;同时,离子液体可增强传感界面的导电性,提高传感器的灵敏度。在优化的实验条件下,传感器的线性范围为0.1~40 ng/mL,检出限为0.06 ng/mL。  相似文献   

4.
5.
A universal chirality detection platform based on immuno-recognition-driven nanoparticle assembly has been fabricated for the first time. A strong shifted chiral signal was produced by asymmetric plasmonic nanoparticle dimers. Using bisphenol A (BPA) as a model target substrate, the LOD was 0.02 ng mL(-1).  相似文献   

6.
Thin polymeric membranes have been formed by liquid/liquid interfacial copolymerization of a sterically demanding tetraphenylporphyrin derivative having reactive phenol substituents and a second porphyrin having reactive acid chloride groups. The out-of-plane steric demand is created by 3,5-hexoxyphenyl groups positioned at two of the four meso carbons of the porphyrin ring. The bulky substituents were designed to create local pockets and extended pores within the resulting ester-linked copolymer. Quantitative measures of molecular and ionic transport were obtained by placing membranes over microelectrodes and recording voltammetric responses from redox-active probes. The membranes were found to be permeable to small molecules and ions, but blocking toward larger ones, displaying a sharp size cutoff at a probe diameter of ca. 3.5 A. Molecular transport can be modulated by axially ligating pore-blocking moieties to available porphyrin metal centers.  相似文献   

7.
8.
A simple,sensitive,and reliable method for the voltammetric determination of bisphenol A(BPA) by using carboxylic group functionalized single-walled carbon nanotubes(f-SWCNT)/carboxylic-functionalized poly(3,4-ethylenedioxythiophene)(PC4) complex modified glassy carbon electrode(GCE) has been successfully developed.The electrochemical behavior of BPA at the surface of the modified electrode is investigated by electrochemical techniques.The cyclic voltammetry results show that the as-prepared electrode exhibits strong catalytic activity toward the oxidation of BPA with a well-defined anodic peak at 0.623 V in PBS(0.1 mol/L,pH 7.0).The surface morphology of the 3D network of composite film is beneficial for the adsorption of analytes.Under the optimized conditions,the oxidation peak current is proportional to BPA concentration in the range between 0.099 and 5.794 μmol/L(R~2 = 0.9989),with a limit of detection of 0.032 μmol/L(S/N = 3).The enhanced performance of the sensor can be attributed to the excellent electrocatalytic property of/-SWCNT and the extraordinary conductivity of PC4.Furthermore,the proposed modified electrode displays high stability and good reproducibility.The good result on the voltammetric determination of BPA also indicates that the asfabricated modified electrode will be a good candidate for the electrochemical determination and analysis of BPA.  相似文献   

9.
基于室温离子液体的电导型气体传感器   总被引:1,自引:1,他引:0  
本文利用室温离子液体对水或有机蒸气吸收后其离子导电性的改变,研制了以离子液体BmimPF6为敏感材料的电导型气体传感器.考查了BmimPF6用量对传感器响应的影响,测定了传感器对不同浓度的水蒸汽及乙醇、二氯甲烷等饱和有机蒸气的响应.实验结果显示,该传感器具有制作方便、结构简单、稳定性高及线性范围宽等优点,可被用于不同浓度的水或有机蒸气/氮气混合气氛中,水蒸汽或有机蒸气浓度的测定.此外,还针对该传感器对乙醇等不同饱和有机蒸气响应信号与这些有机溶剂的理化性质参数间的定量关系,采用化学计量学方法进行了建模分析.  相似文献   

10.
The ionic liquid 1-{3-[(2-aminoethyl)amino]propyl}-3-vinylimidazole bromide was synthesized and used to fabricate a molecularly imprinted film for electrochemical sensing of myoglobin (Myo). This film was deposited on a glassy carbon electrode modified with multi-walled carbon nanotubes by using the ionic liquid as the functional monomer, Myo as the template, N,N′-methylenebisacrylamide as the crosslinker, and a redox system containing ammonium persulfate and N,N,N′,N′-tetramethylethylenediamine as the initiator. The sensing performance of the modified electrode was investigated by using the hexacyanoferrate system as an electrochemical redox probe. The results demonstrated that the sensor possesses good selectivity and high sensitivity. The oxidation peak current at the potential of ~0.3 V (vs. SCE) was found linearly related to the myoglobin concentration in the range from 60.0 nM to 6.0 μM, with a 9.7 nM detection limit at an S/N ratio of 3. The sensor was applied to the determination of Myo in spiked serum samples where it showed average recoveries (for n = 5) of 96.5 %.
Graphical abstract By using a polymerizable ionic liquid as the functional monomer, a myoglobin imprinted polymer was fabricated on a multi-walled carbon nanotube modified glassy carbon electrode. The sensing performances of the molecularly imprinted sensor towards myoglobin demonstrated good selectivity, sensitivity and accuracy.
  相似文献   

11.
S Park  HC Kim  TD Chung 《The Analyst》2012,137(17):3891-3903
Analytical applications and the underlying principles of unique electrochemistry in nanoporous structures are reviewed and discussed. In addition to the conventional concept of enlarged surface area, the structural effects of nanoporous materials can play significant roles such as discriminative electrokinetics, the nano-confinement effect, electrical double layer overlapping, ion-selective impedance, etc. The applications described in this review article include solid-state pH sensors, miniaturized pseudo-reference electrodes, nonenzymatic glucose monitoring, ion diodes, transistors, extracellular neural probes, and a few more. Further intensive research is required to develop creative analytical tools based on nanoporous structures and to unravel the underlying physicochemical principles.  相似文献   

12.
A series of polymerized ionic liquid crystals (PILCs) bearing fluorinated cholesteryl mesogens were synthesized in this work, which include polymerized imidazolium bromides (PIBs) and polymerized imidazolium hexafluorophosphates (PIHs). The PIBs were synthesized using alkyl bromine‐containing polysiloxanes and 1‐butyl‐1H‐imidazole, and the PIHs were synthesized by anion metathesis reaction using the corresponding PIBs and KPF6. The chemical structures, liquid crystalline (LC) properties, and electrorheological (ER) effect of these PILCs were characterized by use of various experimental techniques. All the PILCs showed smectic A mesophase on heating and cooling cycles. The smectic layer structure of these PILCs are originated from the rigid fluorinated cholesteryl mesogens and the flexible moieties in the LC phase, but the ion pairs (imidazolium cations–PF6?, Im+–PF6?; or imidazolium cations–Br?, Im+–Br?) can disperse in the polysiloxane matrix and expand the d‐spacing in the smectic layers. The PIHs show lower Tg and Ti than the corresponding precursor PIBs, which is due to the larger ion volume of Im+–PF6? for PIHs than that of Im+–Br? for PIBs. A series of 40 V% ER fluids were prepared by mixing the PILCs with polydimethylsiloxane (PDMS), and the ER behaviors were studied. All the PILC/PDMS fluids showed ER effect, and the PIH/PDMS fluids show a little greater ER effect than the PIB/PDMS fluids. The PILC droplets in the ER fluids become deformed owing to both the orientation of fluorinated cholesteryl mesogens and the suppression of ionic migration when a DC electric field was applied, resulting in the occurrence of ER effect. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
In this work, we investigate the effect of morphology and segmental dynamics on ion transport in polymerized lyotropic liquid crystals (polyLLCs) containing 1-butyl-3-methylimidazolium tetrafluoroborate as ionic liquid (IL). We demonstrate that two important factors, which affect ion conduction in polyLLCs, are grain size and chain density at the interface. The polyLLC with large grain size (70 nm) shows significant reduction in ion conductivity (one order of magnitude) compared to its homopolymer/IL mixture. However, the polyLLC with small grain size (20 nm) has little difference in ion conductivity compared to its homopolymer/IL mixture. It is observed that decreasing the chain density enhances the interaction of IL with polymer chains and consequently slows the relaxation of polymer chains. In addition, comparing the dynamics of polymer chains in mixtures of homopolymer/IL and templated LLC mesophases shows that the confinement in LLC structure prolongs the relaxation of polymer chains.  相似文献   

14.
The electrochemical immobilization of redox active molecule based ionic liquid onto glassy carbon electrode has been performed. 1-Nitrophenylethyl-3-methylferrocenylimidazolium bis(trifluoromethylsulfonyl)imide was synthesized and characterized by electrochemistry showing the presence of two redox couples. Following that, the electrochemical reduction of this molecule in acidic media containing sodium nitrite leads to the in situ formation of the corresponding diazonium, in the vicinity of the electrode, and subsequently the grafting of redox based ionic liquid molecule onto the electrode surface. The surface analysis of the attached layer confirms the formation of organic thin film strongly attached to the electrode surface, and evidences the presence of the components of the imidazolium ring, ferrocenyl unit, and TFSI anion. In addition, the modified electrode was electrochemically characterized by following the electrochemical signal of the attached ferrocenyl unit. Finally, the electrochemical reversible wettability of the modified electrode upon oxidation and reduction process was demonstrated.  相似文献   

15.
16.
The electrochemical properties of Riboflavin adsorbed on carbon ionic liquid electrode (CILE) were studied by cyclic voltammetry. A film with a surface coverage of up to 3.3 × 10−9 mol cm−2 was formed after 10 min exposure time. Electron transfer coefficient and rate constant of electron transfer across the modified electrode were found to be 0.43 and 3.03 s−1, respectively. Differential pulse voltammetry was used for the determination of Riboflavin. Two linear working ranges of 0.8-110 nM and 0.11-1.0 μM were obtained with correlation coefficients of 0.998 and 0.996, respectively. The experimental detection limit was obtained as 0.1 nM. The relative standard deviation for five replicate analyses was 4.7%. Other soluble vitamins had no significant interferences and the electrode was used for the determination of Riboflavin in pharmaceutical products, nutrition and beverages.  相似文献   

17.
A novel type of random copolymer comprised of a polymerized ionic liquid, poly(1-((4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), and amorphous rubbery poly(oxyethylene methacrylate) (POEM) was synthesized and employed as a solid electrolyte in an I2-free dye-sensitized solar cell (DSSC). The copolymer electrolytes deeply infiltrated into the nanopores of mesoporous TiO2 films, resulting in improved interfacial contact of electrode/electrolyte. The glass transition temperature (T g) of the PEBII–POEM (?23 °C) was lower than that of PEBII homopolymer (?4 °C), indicating greater chain flexibility in the former. However, the DSSC efficiency of PEBII–POEM (4.5 % at 100 mW/cm2) was lower than that of PEBII (5.9 %), indicating that ion concentration is more important than chain flexibility. Interestingly, upon the introduction of ionic liquid, i.e., 1-methyl-3 propylimidazolium iodide, the efficiency of PEBII remained almost constant (5.8 %), whereas that of PEBII–POEM was significantly improved up to 7.0 % due to increased I? ion concentration, which is one of the highest values for I2-free DSSCs.  相似文献   

18.
An electrochemical sensor for cinchonine (CCN) using the β-cyclodextrin (β-CD) modified poly(N-acetylaniline) (PAA) electrode has been developed, in which 1,4-hydroquinone (HQ) was chosen as a probe. Complexation of HQ with β-CD modified on the glassy carbon electrode (GCE) was examined by cyclic voltammetry (CV). HQ was included in the cavity of β-CD and reversible voltammograms were observed. In the presence of CCN, a competitive inclusion equilibrium with β-CD was established between HQ and CCN, lowering the peak current of HQ. The decrease in the peak current of HQ is directly proportional to the amount of CCN. Linear calibration plot was obtained over the range from 4.0 × 10−6 to 8.0 × 10−5 M with a detection limit (S/N = 3) of 2.0 × 10−6 M. From the inhibitory effect of CCN on the inclusion of HQ by β-CD, the apparent formation constant of CCN with the immobilized β-CD was estimated. This electrochemical sensor showed excellent sensitivity, repeatability, stability and recovery for the determination of CCN. The response mechanism of the sensor was discussed in detail. The optimum steric configuration of inclusion complex was presented by molecular dynamics simulation.  相似文献   

19.
An electrochromic liquid crystal (ECLC) material composed of only liquid crystal (LC) and ionic liquid (IL) was developed. The LC containing the substituted diphenylacetylene serves as electrochromic (EC) material to realise transmittance and colour change under the direct current (DC) field, while the IL with the designable cation and anion served as electrolyte. Herein, a series of IL electrolytes was screened to investigate how IL tunes the electro-optic performance of the ECLC cell. By testing the electrochemistry window of ILs in EC cells, IL with the [NTf2]? anion shows adequate electrochemical stability when the EC material undergoes oxidation and reduction. The electro-optic performance of ECLC containing 1-ethoxy-4-[2-(4-pentylphenyl) ethynyl]-benzene (PEB) and IL was then evaluated by UV-vis spectrometry under the control of an electrochemical work station. Compared with other PEB-IL, PEB-[Bmim][NTf2] with [Bmim][NTf2] electrolyte shows a satisfactory transmittance at low operating voltage. Furthermore, Pd NPs in situ formed in [Bmim][NTf2] reduced the EC potential and improved the light scattering of the ECLC cell. In this work, we also designed a bifunctional device based on polymer dispersed liquid crystal (PDLC) that hosts electrochromic guest molecules, and analysed the electro-optical and electrochromic properties of LC electrolyte mixtures, in order to gain control of the incident daylight and glare in building and automotive applications.  相似文献   

20.
A novel sensor was constructed based on the catalytic activity of ferrocene (Fc) that was immobilized on a room temperature ionic liquids (RTILs), 1-ethyl-3-methyl imidazolium tetrafluoroborate ([EMIM][BF4]), film. Electrochemical behavior of ferrocene was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of stable, well-defined and quasi-reversible redox peak of ferrocene could be obtained at pH 7.0 phosphate buffer. Further investigations reveal that both anodic and cathodic peak currents of ferrocene vary linearly with the concentration of hydrogen peroxide (H2O2). Based on this, a new sensor for the measurement of H2O2 can be fabricated facilely. This sensor allowed us to measure H2O2 by polarizing the electrode under ether anodic or cathodic potential with an excellent stability and anti-interfering ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号