共查询到20条相似文献,搜索用时 0 毫秒
1.
Hierarchical linear regression models for conditional quantiles 总被引:3,自引:0,他引:3
TIAN Maozai & CHEN Gemai School of Statistics Renmin University of China Beijing China Center for Applied Statistics Renmin University of China Beijing China Department of Mathematics Statistics University of Calgary Canada 《中国科学A辑(英文版)》2006,49(12):1800-1815
The quantile regression has several useful features and therefore is gradually developing into a comprehensive approach to the statistical analysis of linear and nonlinear response models, but it cannot deal effectively with the data with a hierarchical structure. In practice, the existence of such data hierarchies is neither accidental nor ignorable, it is a common phenomenon. To ignore this hierarchical data structure risks overlooking the importance of group effects, and may also render many of the traditional statistical analysis techniques used for studying data relationships invalid. On the other hand, the hierarchical models take a hierarchical data structure into account and have also many applications in statistics, ranging from overdispersion to constructing min-max estimators. However, the hierarchical models are virtually the mean regression, therefore, they cannot be used to characterize the entire conditional distribution of a dependent variable given high-dimensional covariates. Furthermore, the estimated coefficient vector (marginal effects) is sensitive to an outlier observation on the dependent variable. In this article, a new approach, which is based on the Gauss-Seidel iteration and taking a full advantage of the quantile regression and hierarchical models, is developed. On the theoretical front, we also consider the asymptotic properties of the new method, obtaining the simple conditions for an n1/2-convergence and an asymptotic normality. We also illustrate the use of the technique with the real educational data which is hierarchical and how the results can be explained. 相似文献
2.
利用局部多项式方法研究了误差具有异方差结构的非参数回归模型,在左截断数据下构造了回归函数的复合分位数回归估计,并得到了该估计的渐近正态性结果,最后通过模拟,在服从一些非正态分布的误差下,得到该估计比局部线性估计更有效. 相似文献
3.
This paper studies estimation in partial functional linear quantile regression in which the dependent variable is related to both a vector of finite length and a function-valued random variable as predictor variables. The slope function is estimated by the functional principal component basis. The asymptotic distribution of the estimator of the vector of slope parameters is derived and the global convergence rate of the quantile estimator of unknown slope function is established under suitable norm. It is showed that this rate is optimal in a minimax sense under some smoothness assumptions on the covariance kernel of the covariate and the slope function. The convergence rate of the mean squared prediction error for the proposed estimators is also be established. Finite sample properties of our procedures are studied through Monte Carlo simulations. A real data example about Berkeley growth data is used to illustrate our proposed methodology. 相似文献
4.
In this paper we propose a new method of local linear adaptive smoothing for nonparametric conditional quantile regression. Some theoretical properties of the procedure are investigated. Then we demonstrate the performance of the method on a simulated example and compare it with other methods. The simulation results demonstrate a reasonable performance of our method proposed especially in situations when the underlying image is piecewise linear or can be approximated by such images. Generally speaking, our method outperforms most other existing methods in the sense of the mean square estimation (MSE) and mean absolute estimation (MAE) criteria. The procedure is very stable with respect to increasing noise level and the algorithm can be easily applied to higher dimensional situations. 相似文献
5.
本文提出复合最小化平均分位数损失估计方法 (composite minimizing average check loss estimation,CMACLE)用于实现部分线性单指标模型(partial linear single-index models,PLSIM)的复合分位数回归(composite quantile regression,CQR).首先基于高维核函数构造参数部分的复合分位数回归意义下的相合估计,在此相合估计的基础上,通过采用指标核函数进一步得到参数和非参数函数的可达最优收敛速度的估计,并建立所得估计的渐近正态性,比较PLSIM的CQR估计和最小平均方差估计(MAVE)的相对渐近效率.进一步地,本文提出CQR框架下PLSIM的变量选择方法,证明所提变量选择方法的oracle性质.随机模拟和实例分析验证了所提方法在有限样本时的表现,证实了所提方法的优良性. 相似文献
6.
本文结合分位数回归技术,基于删失回归模型,把Claeskens和Hjort的传统兴趣信息准侧(focused information criterion,FIC)扩展到兴趣向量的情形,提出扩展的兴趣信息准则(extended focused information criterion,E-FIC),有效解决了同时针对多个兴趣参数的平均估计问题,并且对删失响应变量的不同水平分位数进行建模,以全面反映响应变量分布特征,有效克服异常值和厚尾模型误差的影响.基于扩展的兴趣信息准则给出参数的平均估计方法,证明估计的渐近性质.通过Monte Carlo随机模拟试验比较所提估计方法和最小二乘方法在有限样本量下的表现,用所提方法对原发性胆汁性肝硬化数据集进行数据分析. 相似文献
7.
8.
In this paper, we study the weighted composite quantile regression (WCQR) for general linear model with missing covariates. We propose the WCQR estimation and bootstrap test procedures for unknown parameters. Simulation studies and a real data analysis are conducted to examine the finite performance of our proposed methods. 相似文献
9.
This paper considers the weighted composite quantile (WCQ) regression for linear model with random censoring. The adaptive penalized procedure for variable selection in this model is proposed, and the consistency, asymptotic normality and oracle property of the resulting estimators are also derived. The simulation studies and the analysis of an acute myocardial infarction data set are conducted to illustrate the finite sample performance of the proposed method. 相似文献
10.
Composite quantile regression model with measurement error is considered. The SIMEX estimators of the unknown regression coefficients are proposed based on the composite quantile regression. The proposed estimators not only eliminate the bias caused by measurement error, but also retain the advantages of the composite quantile regression estimation. The asymptotic properties of the SIMEX estimation are proved under some regular conditions. The finite sample
properties of the proposed method are studied by a simulation study, and a real example is analyzed. 相似文献
11.
??Composite quantile regression model with measurement error is considered. The SIMEX estimators of the unknown regression coefficients are proposed based on the composite quantile regression. The proposed estimators not only eliminate the bias caused by measurement error, but also retain the advantages of the composite quantile regression estimation. The asymptotic properties of the SIMEX estimation are proved under some regular conditions. The finite sample
properties of the proposed method are studied by a simulation study, and a real example is analyzed. 相似文献
12.
Simple outlier labeling based on quantile regression,with application to the steelmaking process 下载免费PDF全文
This paper introduces some methods for outlier identification in the regression setting, motivated by the analysis of steelmaking process data. The proposed methodology extends to the regression setting the boxplot rule, commonly used for outlier screening with univariate data. The focus here is on bivariate settings with a single covariate, but extensions are possible. The proposal is based on quantile regression, including an additional transformation parameter for selecting the best scale for linearity of the conditional quantiles. The resulting method is used to perform effective labeling of potential outliers, with a quite low computational complexity, allowing for simple implementation within statistical software as well as commonly used spreadsheets. Some simulation experiments have been carried out to study the swamping and masking properties of the proposal. The methodology is also illustrated by some real life examples, taking as the response variable the energy consumed in the melting process. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
Quantile regression is used in many areas of applied research and business. Examples are actuarial, financial or biometrical applications. We show that a non‐parametric generalization of quantile regression based on kernels shares with support vector machines the property of consistency to the Bayes risk. We further use this consistency to prove that the non‐parametric generalization approximates the conditional quantile function which gives the mathematical justification for kernel‐based quantile regression. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
14.
Traditional risk measurements have proven inadequate in capturing tail risk and nonlinear correlation. This study proposes a novel approach to measure financial risk in the Internet finance industry: a new Value-at-Risk (VaR) measurement based on quantile regression neural network (QRNN). Sparrow Search Algorithm (SSA) is utilized to optimize the QRNN model, which improves the model's performance in predicting internet finance risk. By comparing the TGARCH-VaR and QR-VaR approaches, our study demonstrates the effectiveness of the QRNN-VaR approach and its potential to improve the accuracy of risk prediction in the Internet finance industry. This study further examines and compares the risks between the traditional and internet finance industries. It also considers the unique impact of COVID-19 on industry risk based on statistical testing for differences and machine learning models. Our results indicate that the level of risk in the Internet finance industry is higher than in the traditional finance industry. Moreover, COVID-19 has contributed to increased risk within the Internet finance industry. These findings have significant implications for investors and policymakers seeking to better understand and manage risks within the Internet finance industry, particularly in the ongoing COVID-19 pandemic. 相似文献
15.
The classic hierarchical linear model formulation provides a considerable flexibility for modelling the random effects structure and a powerful tool for analyzing nested data that arise in various areas such as biology, economics and education. However, it assumes the within-group errors to be independently and identically distributed (i.i.d.) and models at all levels to be linear. Most importantly, traditional hierarchical models (just like other ordinary mean regression methods) cannot characterize the entire conditional distribution of a dependent variable given a set of covariates and fail to yield robust estimators. In this article, we relax the aforementioned and normality assumptions, and develop a so-called Hierarchical Semiparametric Quantile Regression Models in which the within-group errors could be heteroscedastic and models at some levels are allowed to be nonparametric. We present the ideas with a 2-level model. The level-1 model is specified as a nonparametric model whereas level-2 model is set as a parametric model. Under the proposed semiparametric setting the vector of partial derivatives of the nonparametric function in level-1 becomes the response variable vector in level 2. The proposed method allows us to model the fixed effects in the innermost level (i.e., level 2) as a function of the covariates instead of a constant effect. We outline some mild regularity conditions required for convergence and asymptotic normality for our estimators. We illustrate our methodology with a real hierarchical data set from a laboratory study and some simulation studies. 相似文献
16.
Composite quantile regression with randomly censored data is studied. Moreover, adaptive LASSO methods for composite quantile regression with randomly censored data are proposed. The consistency, asymptotic normality and oracle property of the proposed estimators are established. The proposals are illustrated via simulation studies and the Australian AIDS dataset. 相似文献
17.
Keith Knight 《Applications of Mathematics》2008,53(3):223-234
We consider the asymptotic distribution of covariate values in the quantile regression basic solution under weak assumptions. A diagnostic procedure for assessing homogeneity of the conditional densities is also proposed. The research for this paper was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. 相似文献
18.
A longitudinal study of the effects of family background factors on mathematics achievements using quantile regression 总被引:1,自引:0,他引:1
Xi-zhi Wu Mao-zai Tian 《应用数学学报(英文版)》2008,24(1):85-98
Quantile regression is gradually emerging as a powerful tool for estimating models of conditional quantile functions, and therefore research in this area has vastly increased in the past two decades. This paper, with the quantile regression technique, is the first comprehensive longitudinal study on mathematics participation data collected in Alberta, Canada. The major advantage of longitudinal study is its capability to separate the so-called cohort and age effects in the context of population studies. One aim of this paper is to study whether the family background factors alter performance on the mathematical achievement of the strongest students in the same way as that of weaker students based on the large longitudinal sample of 2000, 2001 and 2002 mathematics participation longitudinal data set. The interesting findings suggest that there may be differential family background factor effects at different points in the mathematical achievement conditional distribution. 相似文献
19.
本文研究了空间数据变系数部分线性回归中的分位数估计. 模型中的参数估计量通过未知系数函数的分段多项式逼近得到, 而未知系数函数的估计量通过将参数估计量代入模型中并通过局部线性逼近得到. 文中推导了未知参数向量估计量的渐近分布, 并建立了未知系数函数估计量在内点及边界点的渐近分布. 通过Monte Carlo 模拟研究了估计量的有限样本性质. 相似文献
20.
Robust estimation procedures for linear and mixture linear errors-in-variables regression models are proposed based on the relationship between the least absolute deviation criterion and maximum likelihood estimation in a Laplace distribution. The finite sample performance of the proposed procedures is evaluated by simulation studies. 相似文献