首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on a linear finite element space, a symmetric finite volume scheme for a self-adjoint elliptic boundary-value problem is proposed. Error estimates in L2-norm, H1-norm, and L-norm are derived. Some post-processing techniques are also provided.  相似文献   

2.
In this paper, a new stabilized finite volume method is studied and developed for the stationary Navier-Stokes equations. This method is based on a local Gauss integration technique and uses the lowest equal order finite element pair P 1P 1 (linear functions). Stability and convergence of the optimal order in the H 1-norm for velocity and the L 2-norm for pressure are obtained. A new duality for the Navier-Stokes equations is introduced to establish the convergence of the optimal order in the L 2-norm for velocity. Moreover, superconvergence between the conforming mixed finite element solution and the finite volume solution using the same finite element pair is derived. Numerical results are shown to support the developed convergence theory.  相似文献   

3.
A priori error estimates in the H1- and L2-norms are established for the finite element method applied to the exterior Helmholtz problem, with modified Dirichlet-to-Neumann (MDtN) boundary condition. The error estimates include the effect of truncation of the MDtN boundary condition as well as that of discretization of the finite element method. The error estimate in the L2-norm is sharper than that obtained by the author [D. Koyama, Error estimates of the DtN finite element method for the exterior Helmholtz problem, J. Comput. Appl. Math. 200 (1) (2007) 21-31] for the truncated DtN boundary condition.  相似文献   

4.
This paper focuses on the low-order nonconforming rectangular and quadrilateral finite elements approximation of incompressible flow.Beyond the previous research works,we propose a general strategy to construct the basis functions.Under several specific constraints,the optimal error estimates are obtained,i.e.,the first order accuracy of the velocities in H1-norm and the pressure in L2-norm,as well as the second order accuracy of the velocities in L2-norm.Besides,we clarify the differences between rectangular and quadrilateral finite element approximation.In addition,we give several examples to verify the validity of our error estimates.  相似文献   

5.
We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in L(J; L2Ω)-norm and L2(J; L2Ω)-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples.  相似文献   

6.
In this article, a coupling method of new mixed finite element (MFE) and finite element (FE) is proposed and analyzed for fourth-order parabolic partial differential equation. First, the fourth-order parabolic equation is split into the coupled system of second-order equations. Then, an equation is solved by finite element method, the other equation is approximated by the new mixed finite element method, whose flux belongs to the square integrable space replacing the classical H(div;Ω) space. The stability for fully discrete scheme is derived, and both semi-discrete and fully discrete error estimates are obtained. Moreover, the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term γ and a priori error estimate in (L 2)2-norm for its flux σ are derived. Finally, some numerical results are provided to validate our theoretical analysis.  相似文献   

7.
The main aim of this paper is to study the error estimates of a rectangular nonconforming finite element for the stationary Navier-Stokes equations under anisotropic meshes. That is, the nonconforming rectangular element is taken as approximation space for the velocity and the piecewise constant element for the pressure. The convergence analysis is presented and the optimal error estimates both in a broken H1-norm for the velocity and in an L2-norm for the pressure are derived on anisotropic meshes.  相似文献   

8.
A low order anisotropic nonconforming rectangular finite element method for the convection-diffusion problem with a modified characteristic finite element scheme is studied in this paper. The O(h2) order error estimate in L2-norm with respect to the space, one order higher than the expanded characteristic-mixed finite element scheme with order O(h), and the same as the conforming case for a modified characteristic finite element scheme under regular meshes, is obtained by use of some distinct properties of the interpolation operator and the mean value technique, instead of the so-called elliptic projection, which is an indispensable tool in the convergence analysis of the previous literature. Lastly, some numerical results of the element are provided to verify our theoretical analysis.  相似文献   

9.
该文将一个低阶Crouzeix-Raviart型非协调三角形元应用到非定常Navier-Stokes方程,给出了其质量集中有限元逼近格式.在不需要传统Ritz-Volterra投影下,通过引入两个辅助有限元空间对边界进行估计的技巧,在各向异性网格下导出了速度的L~2模和能量模及压力的L~2模的误差估计.  相似文献   

10.
In this paper, we present a mixed covolume method for parabolic equations on triangular grids. This method use the lowest order Raviart–Thomas (R–T) mixed finite element space as the trial space. We prove the optimal order of convergence for the approximate pressure and velocity in L2-norm. Furthermore, we obtain the quasi-optimal error estimates for the approximate pressure in L-norm.  相似文献   

11.
In this paper, we study a priori error estimates for the finite volume element approximation of nonlinear optimal control problem. The schemes use discretizations based on a finite volume method. For the variational inequality, we use the method of the variational discretization concept to obtain the control. Under some reasonable assumptions, we obtain some optimal order error estimates. The approximate order for the state, costate and control variables is O(h 2) or \(O\left( {{h^2}\sqrt {\left| {\ln h} \right|} } \right)\) in the sense of L 2-norm or L -norm. A numerical experiment is presented to test the theoretical results. Finally, we give some conclusions and future works.  相似文献   

12.
A new first-order system formulation for the linear elasticity problem in displacement-stress form is proposed. The formulation is derived by introducing additional variables of derivatives of the displacements, whose combinations represent the usual stresses. Standard and weighted least-squares finite element methods are then applied to this extended system. These methods offer certain advantages such as that they need not satisfy the inf-sup condition which is required in the mixed finite element formulation, that a single continuous piecewise polynomial space can be used for the approximation of all the unknowns, that the resulting algebraic systems are symmetric and positive definite, and that accurate approximations of the displacements and the stresses can be obtained simultaneously. With displacement boundary conditions, it is shown that both methods achieve optimal rates of convergence in the H1-norm and in the L2-norm for all the unknowns. Numerical experiments with various Poisson ratios are given to demonstrate the theoretical error estimates.  相似文献   

13.
A new nonconforming triangular element for the equations of planar linear elasticity with pure traction boundary conditions is considered. By virtue of construction of the element, the discrete version of Korn’s second inequality is directly proved to be valid. Convergence rate of the finite element methods is uniformly optimal with respect to λ. Error estimates in the energy norm and L2-norm are O(h2) and O(h3), respectively.  相似文献   

14.
In this paper, we shall investigate the superconvergence property of quadratic elliptical optimal control problems by triangular mixed finite element methods. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite elements and the control is discretized by piecewise constant functions. We prove the superconvergence error estimate of h2 in L2-norm between the approximated solution and the interpolation of the exact control variable. Moreover, by postprocessing technique, we find that the projection of the discrete adjoint state is superclose (in order h2) to the exact control variable.  相似文献   

15.
In this article, we propose and analyze several numerical methods for the nonlinear delay reaction–diffusion system with smooth and nonsmooth solutions, by using Quasi-Wilson nonconforming finite element methods in space and finite difference methods (including uniform and nonuniform L1 and L2-1σ schemes) in time. The optimal convergence results in the senses of L2-norm and broken H1-norm, and H1-norm superclose results are derived by virtue of two types of fractional Grönwall inequalities. Then, the interpolation postprocessing technique is used to establish the superconvergence results. Moreover, to improve computational efficiency, fast algorithms by using sum-of-exponential technique are built for above proposed numerical schemes. Finally, we present some numerical experiments to confirm the theoretical correctness and show the effectiveness of the fast algorithms.  相似文献   

16.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

17.
We analyze an h-p version Petrov-Galerkin finite element method for linear Volterra integrodifferential equations. We prove optimal a priori error bounds in the L 2- and H 1-norm that are explicit in the time steps, the approximation orders and in the regularity of the exact solution. Numerical experiments confirm the theoretical results. Moreover, we observe that the numerical scheme superconverges at the nodal points of the time partition.  相似文献   

18.
The triangular linear fnite elements on piecewise uniform grid for an elliptic problem in convex polygonal domain are discussed.Global superconvergence in discrete H1-norm and global extrapolation in discrete L2-norm are proved.Based on these global estimates the conjugate gradient method(CG)is efective,which is applied to extrapolation cascadic multigrid method(EXCMG).The numerical experiments show that EXCMG is of the global higher accuracy for both function and gradient.  相似文献   

19.
In this paper, we present a posteriori error analysis for hp finite element approximation of convex optimal control problems. We derive a new quasi-interpolation operator of Clément type and a new quasi-interpolation operator of Scott-Zhang type that preserves homogeneous boundary condition. The Scott-Zhang type quasi-interpolation is suitable for an application in bounding the errors in L2-norm. Then hp a posteriori error estimators are obtained for the coupled state and control approximations. Such estimators can be used to construct reliable adaptive finite elements for the control problems.  相似文献   

20.
We analyze an immersed interface finite element method based on linear polynomials on noninterface triangular elements and piecewise linear polynomials on interface triangular elements. The flux jump condition is weakly enforced on the smooth interface. Optimal error estimates are derived in the broken H 1-norm and L 2-norm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号