首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this research, a mixed immunoassay design for multiple chemical residues detection based on combined reverse competitive enzyme-linked immunosorbent assay (ELISA) procedure was developed. This method integrated two reverse ELISA reactions in one assay by labeling horseradish peroxidase to deoxynivalenol (DON) and orbifloxacin. Within this method, IC50 of the two mAbs for each analyte we produced ranged from 23?~?68 ng?mL?1 for DONs and 4.1?~?49 ng?mL?1 for quinolones (QNs). The limit of detection measured by IC10 was achieved at 0.45–1.3 ng?mL?1 for DONs and 0.59–6.9 ng?mL?1 for QNs, which was lower than the maximum residue levels. Recoveries in negative samples spiked at concentrations of 100, 200, and 500 ng?mL?1 ranged from 91.3 to 102.2 % for DONs and 88.7–98.05 % for QNs with relative standard deviation less than 9.88 and 12.67 %. The results demonstrated that this developed immunoassay was suitable for screening of low molecular weight contaminants.
Figure
Combined reverse ELISA procedure for multi-chemical residues analysis  相似文献   

2.
We described a sensitive, label-free electrochemical immunosensor for the detection of carcinoembryonic antigen. It is based on the use of a glassy carbon electrode (GCE) modified with a multi-layer films made from Prussian Blue (PB), graphene and carbon nanotubes by electrodeposition and assembling techniques. Gold nanoparticles were electrostatically absorbed on the surface of the film and used for the immobilization of antibody, while PB acts as signaling molecule. The stepwise assembly process was investigated by differential pulse voltammetry and scanning electron microscopy. It is found that the formation of antibody-antigen complexes partially inhibits the electron transfer of PB and decreased its peak current. Under the optimal conditions, the decrease of intensity of the peak current of PB is linearly related to the concentration of carcinoembryonic antigen in two ranges (0.2–1.0, and 1.0–40.0 ng·mL?1), with a detection limit of 60 pg·mL?1 (S/N?=?3). The immunosensor was applied to analyze five clinical samples, and the results obtained were in agreement with clinical data. In addition, the immunosensor exhibited good precision, acceptable stability and reproducibility.
Figure
We described a sensitive electrochemical immunosensor for the detection of the carcinoembryonic antigen. It was based on the use of a glassy carbon electrode modified with a multi-layer films made from Prussian blue, graphene, and carbon nanotubes by electrodeposition and assembling techniques. The immunosensor exhibited good precision and acceptable stability and has been applied to analyze clinical sample with a satisfactory result.  相似文献   

3.
We have developed a highly sensitive electrochemical immunoassay for the quantitation of zearalenone (ZEN), a mycotoxin produced by Fusarium species. In this enzyme linked immunosorbent assay, the enzymatic conversion of the substrate p-nitrophenylphosphate is detected by a microplate reader and the signal subsequently converted into an electrical signal. The concentrations of coating antigen (ZEN-ovalbumin), of monoclonal antibody, and of goat anti-mouse antibody labeled with alkaline phosphatase were optimized. In terms of electrochemical detection, the types and pH values of the buffers, the conditions for agitating, and scanning frequency were optimized. The effective detection range of this immunoassay is quite wide (0.004 to 9.5 ng?mL?1), and the limit of detection is 2 pg?mL?1. ZEN-free corn, wheat, and grain-based food samples were spiked with ZEN and analyzed by this method, and recoveries were found to range from 91.6 % to 113.0 %. Unlike previously described electrochemical methods, this method is both highly sensitive and has a wide working range. The method is fast and thus provides a platform for high-throughput analysis that meets the current need to monitor trace levels of analytes in grain and grain-based food.
Figure
Scheme of test procedure of electrochemical immunosensor (procedure of immune-reaction: from a to f)  相似文献   

4.
We report on a multiplex bead-based competitive immunoassay using suspension array technology for the simultaneous detection of the pesticides triazophos, carbofuran and chlorpyrifos. Three hapten-protein conjugates were covalently bound to carboxylated fluorescent microspheres to serve as probes. The amount of conjugates and antibodies were optimized. The new multi-analyte assay has dynamic ranges of 0.02–50 ng?mL?1, 0.5–500 ng?mL?1 and 1.0–1000 ng?mL?1 for triazophos, carbofuran and chlorpyrifos, respectively, and the detection limits are 0.024, 0.93 and 1.68 ng?mL?1. This new multiplex assay is superior to the traditional ELISA in possessing a wider detection range, better reproducibility and the feature of multi-target detection. Cross-reactivity studies indicated that the bead-array method is highly selective for the three target pesticides, and that individual analyses have no significant influence between each other, also without cross-reactions from other structurally related pesticides. The method was applied to analyze vegetables spiked with the three pesticides, and the recoveries were in ranges of 78.5–112.1 %, 72.2–120.2 % and 70.2–112.8 %, respectively, with mean coefficients of variation of <15 %.
Figure
Schematic illustration of the multiplex bead-based competitive immunoassay  相似文献   

5.
The fluorescent microsphere has been increasingly used as detecting label in immunoassay because of its stable configuration, high fluorescence intensity, and photostability. In this paper, we developed a novel lateral flow fluorescent microsphere immunoassay (FMIA) for the determination of sulfamethazine (SMZ) in milk in a quantitative manner with high sensitivity, selectivity, and rapidity. A monoclonal antibody to SMZ was covalently conjugated with the carboxylate-modified fluorescent microsphere, which is polystyrene with a diameter of 200 nm. Quantitative detection of SMZ in milk was accomplished by recording the fluorescence intensity of microspheres captured on the test line after the milk samples were diluted five times. Under optimal conditions, the FMIA displays a rapid response for SMZ with a limit of detection of as low as 0.025 ng mL?1 in buffer and 0.11 μg L?1 in milk samples. The FMIA was then successfully applied on spiked milk samples and the recoveries ranged from 101.1 to 113.6 % in the inter-batch assay with coefficient of variations of 6.0 to 14.3 %. We demonstrate here that the fluorescent microsphere-based lateral flow immunoassay (LFIA) is capable of rapid, sensitive, and quantitative detection of SMZ in milk.
Figure
Schematic illustration of the strategy for sulfamethazine detection using a lateral flow fluorescent microsphere immunoassay  相似文献   

6.
We report on a new kind of non-covalent multi-label electrochemical immunoassay that was applied to simultaneously quantify the tumor markers CA15-3 and CA19-9. The method employs a nanohybrid composed of an ionomer and conductive titanium dioxide nanoparticles that act as a matrix support for the antibodies. The two antibodies (anti-CA153 and anti-CA199) were labeled (a) with a cobaltous dipyridine complex, and (b) with methylene blue. Labeling is based on cation-exchange interaction rather than on covalent conjugation. The redox potentials of the two labels are separated by an interval of 0.3 V. The resulting sandwich-type immunosensor was read out by differential pulse voltammetry. The potential sites and currents of the two redox probes reflect the concentration of the two analytes. The two analytes were determined with a detection limit of 1.6 U?mL?1 for CA19-9, and of 0.3 U?mL?1 for CA15-3.
Figure
A new non-covalent multi-label electrochemical immunoassay was applied to simultaneously quantify dual tumor markers. DPV performed the identification and quantification of dual analytes on same electrode surface.  相似文献   

7.
We report on an ultrasensitive fluorescence immunoassay for human chorionic gonadotrophin antigen (hCG). It is based on the use of silica nanoparticles coated with a copolymer (prepared from a fluorene, a phenylenediamine, and divinylbenzene; PF@SiO2) that acts as a fluorescent label for the secondary monoclonal antibody to β-hCG antigen. In parallel, Fe3O4 nanoparticles were coated with polyaniline, and these magnetic particles (Fe3O4@PANI) served as a solid support for the primary monoclonal antibody to β-hCG antigen. The PF@SiO2 exhibited strong fluorescence and good dispersibility in water. A fluorescence sandwich immunoassay was developed that enables hCG concentrations to be determined in the 0.01–100 ng·mL?1 concentration range, with a detection limit of 3 pg·mL?1.
Figure
Fluorescence detection of prepared immune reagent nano-composites using the fluorescence cell  相似文献   

8.
We report on a protocol for a simultaneous competitive immunoassay for tetracycline (TC) and chloramphenicol (CAP) on the same sensing interface. Conjugates of TC and of CAP with bovine serum albumin were first co-immobilized on a glassy carbon electrode modified with gold nanoparticles. In parallel, monoclonal anti-TC and anti-CAP antibodies were conjugated onto CdS and PbS nanoclusters, respectively. In a typical assay, the immobilized haptens and the added target analytes competed for binding to the corresponding antibodies on the nanoclusters. Subsequently, Cd(II) and Pb(II) ions are released from the surface of the corresponding nanoclusters by treatment with acid and then were detected by square wave anodic stripping voltammetry. The currents at the peak potentials for Cd(II) and Pb(II) were used as the sensor signal for TC and CAP, respectively. This multiplex immunoassay enables the simultaneous determination of TC and CAP in a single run with dynamic ranges from 0.01 to 50 ng mL?1 for both analytes. The detection limits for TC and for CAP are 7.5 pg mL?1 and 5.4 pg mL?1, respectively. No obvious nonspecific adsorption and cross-reactivity was observed in a series of analyses. Intra-assay and inter-assay coefficients of variation were less than 10 %. The method was evaluated by analyzing TC and CAP in spiked samples of milk and honey. The recoveries range from 88 % to 107 % for TC, and from 91 % to 119 % for CAP.
Figure
We developed a new multiplexed electrochemical immunoassay for simultaneous determination of tetracycline and chloramphenicol, using metal sulfide nanoclusters as recognition elements.  相似文献   

9.
We report on a novel electrochemiluminescent (ECL) immunoassay for the ultrasensitive determination of morphine by making use of a gold electrode which was modified with a nanocomposite film containing self-assembled polyamidoamine (PAMAM) CdS quantum dots and electrodeposited gold nanoparticles (Au-NPs). The highly uniform and well-dispersed quantum dots were capped with PAMAM dendrimers. Due to the synergistic effect of the modified quantum dots and the electrodeposited Au-NPs, the ECL response is dramatically enhanced. Under optimal experimental conditions, the immunoreaction between morphine and anti-morphine antibody resulted in a decrease of the ECL signal because of steric hindrance. The calibration plot is linear in the morphine concentration range from 0.2 to 180 ng?mL?1, with a detection limit as low as 67 pg?mL?1. The sensor was successfully applied to the determination of morphine in blood plasma. This kind of assay is expected to pave new avenues in label-free drug assays.
Figure
?  相似文献   

10.
We report on a novel immunoassay for porcine pseudorabies virus (PRV) antibody that is based on fluorescence signal amplification induced by silver(I) ion exchange in CdSe nanocrystals. An antigen-antibody-secondary antibody sandwich structure was first formed from PRV, PRV antibody, and CdSe-labeled rabbit anti-pig antibody. Then, the Cd(II) ions in the CdSe labels were released by a cation exchange reaction with Ag(I). Released Cd(II) was finally quantified using the sensitive fluorescent probe Rhodamine 5 N. Due to this signal amplification, the sensitivity and linear range of the immunoassay were largely improved (compared to the traditional ELISA) in having a limit of detection as low as 1.2 ng?mL?1 of PRV antibody and a linear range from 2.44 to 312 ng?mL?1. The successful determination of PRV antibody in pig serum samples is proof for the utility of the method.
Figure
A simple, rapid and sensitive method for the detection of PRV antibody through the fluorescence signal amplification caused by cation-exchange in CdSe NCs was reported. The CdSe NCs labeled rabbit anti-pig IgG was used to capture the PRV antibody. After the immunoreaction, the Cd2+ in the CdSe labels was completely replaced by the cation-exchange reaction with Ag+. Then Cd2+sensitive fluorescence indicator Rhod-5 N was added to bind with Cd2+ and caused the fluorescence signal enhance substantially. Thus a novel method for rapid and sensitive detection of porcine pseudorabies based on the fluorescence signal amplification was developed.  相似文献   

11.
We report on a novel enzyme-enhanced label for the electrochemical determination of diethylstilbestrol (DES). The label was obtained by orientation-controlled immobilization of a multiplex horseradisch peroxidase (HRP) conjugated polymer on gold nanoparticles (AuNPs) using the Envision reagent (EV) which is an enzyme-polymer complex that contains HRP and anti-IgG antibody in a polydextrin amine skeleton. The AuNPs were modified with Concanavalin A (Con A) and served as a carrier for immobilization of the EV?DES antibody composite. This resulted in a bioconjugate of the type AuNP?Con A?EV?DES Ab which was employed as the label. On exposure to samples containing DES, a sandwich immunocomplex is formed between antibody against DES (which was immobilized on a glassy carbon electrode and is acting as a capture probe), DES (the analyte), and the above label as the signal tracer. Hemin was used as an electronic mediator in the reaction of HRP. The HRP on the label catalyzes the oxidative formation of hydrogen peroxide at pH 7.0, and this induces an increased reductive current in the presence of hemin as an electron mediator. Under optimal conditions, the current increases linearly with increasing concentrations of DES in the range from 5 to 500 pg?·?mL?1, with a detection limit as low as 2 pg?·?mL?1 (at an S/N of 3). The method exhibits high selectivity and good stability. It works without incubation so that the time for an assay is shortened to 5 min. The assays was successfully applied to the determination of DES in milk samples.
Figure
?  相似文献   

12.
We describe a silver(I)-selective carbon paste electrode modified with multi-walled carbon nanotubes and a silver-chelating Schiff base, and its electrochemical response to Ag(I). Effects of reduction potential and time, accumulation time, pH of the solution and the stripping medium were studied by differential pulse anodic stripping voltammetry and optimized. The findings resulted in a method for the determination of silver over a linear response range (from 0.5 to 235 ng?mL?1) and with a detection limit as low as 0.08 ng?mL?1. The sensor displays good repeatability (with the RSD of ±?2.75 % for 7 replicates) and was applied to the determination of Ag(I) in water samples and X-ray photographic films.
Figure
Open circuit accumulation of Ag(I) onto a surface of EHPO-MCPE and determination by Differential pulse anodic stripping voltammetry  相似文献   

13.
We report on a sensitive electrochemical immunoassay for the prostate specific antigen (PSA). An immunoelectrode was fabricated by coating a glassy carbon electrode with multiwalled carbon nanotubes, poly(dimethyldiallylammonium chloride), CeO2 and PSA antibody (in this order) using the layer-by-layer method. The immunosensor is then placed in a sample solution containing PSA and o-phenylenediamine (OPD). It is found that the CeO2 nanoparticles facilitate the electrochemical oxidation of OPD, and this produces a signal for electrochemical detection of PSA that depends on the concentration of PSA. There is a linear relationship between the decrease in current and the concentration of PSA in the 0.01 to 1,000 pg mL?1 concentration range, and the detection limit is 4 fg mL?1. The assay was successfully applied to the detection of PSA in serum samples. This new differential pulse voltammetric immunoassay is sensitive and acceptably precise, and the fabrication of the electrode is well reproducible. Figure
A novel electrochemical immunoassay for prostate specific antigen (PSA) was developed. Ceria (CeO2) mesoporous nanospheres facilitated the electrochemical oxidation of o-phenylenediamine (OPD). The developed immunoassay has high sensitivity and can be successfully applied for the detection of PSA in serum samples  相似文献   

14.
A disposable electrochemical myeloperoxidase (MPO) immunosensor was fabricated based on the indium tin oxide electrode modified with a film composed of gold nanoparticles (AuNPs), poly(o-phenylenediamine), multi-walled carbon nanotubes and an ionic liquid. The composite film on the surface of the electrode was prepared by in situ electropolymerization using the ionic liquid as a supporting electrolyte. Negatively charged AuNPs were then adsorbed on the modified electrode via amine-gold affinity and to immobilize MPO antibody. Finally, bovine serum albumin was employed to block possible remaining active sites on the AuNPs. The modification of the electrode was studied by cyclic voltammetry and scanning electron microscopy. The factors affecting the performance of the immunosensor were investigated in detail using the hexacyanoferrate redox system. The sensor exhibited good response to MPO over two linear ranges (from 0.2 to 23.4 and from 23.4 to 300 ng.mL?1), with a detection limit of 0.05 ng.mL?1 (at an S/N of 3).
Figure
A disposable electrochemical immunosensor for myeloperoxidase based on the indium tin oxide electrode modified with an ionic liquid composite film composed of gold nanoparticles, poly(o-phenylenediamine) and carbon nanotubes.  相似文献   

15.
We present two kinds of electrochemical immunoassays for the tumor necrosis factor α (TNF-α) which is a protein biomarker. The antibody against TNF-α was immobilized on a graphite screen-printed electrode modified with poly-anthranilic acid (ASPE). The first is based on impedimetry (and thus label-free) and the target antigen (TNF-α) is captured by the surface of the modified electrode via an immunoreaction upon which impedance is changed. This sensing platform has a detection limit of 5.0 pg mL?1. In the second approach, the monoclonal antibodies on the modified electrode also bind to the target antigen (TNF-α), but detection is based on a sandwich immunoreaction. This is performed by first adding secondary anti-TNF-α antibodies labeled with horseradish peroxidase, and then detecting the response of the sandwich system by adding hydrogen peroxide and acetaminophen as a probe system for HRP activity. This immunosensor also has a very low detection limit (3.2 pg mL?1). The experimental conditions of both assays were studied and optimized via electrochemical impedance spectroscopy and differential pulse voltammetry. The method was then applied to the determination of TNF-α in serum samples where it displayed high sensitivity, selectivity and reproducibility.
Figure
A novel electrochemical immunosensor capable of sensitive and selective detection of tumor necrosis factor α is developed. It is based on the poly-anthranilic acid modified graphite screen-printed electrodes. Validation was made by analyzing human serum.  相似文献   

16.
We describe a simple, environmentally friendly and selective technique for the determination of ochratoxin A (OTA) in urine. It involves (a) the use of a molecularly imprinted polymer as a sorbent in micro-solid-phase extraction in which the sorbent is contained in a propylene membrane envelope, and (b) separation and detection by capillary electrophoresis (CE). Under optimized conditions, response is linear in the range between 50 and 300 ng mL?1 (with a correlation coefficient of 0.9989), relative standard deviations range from 4 to 8 %, the detection limit for OTA in urine is 11.2 ng mL?1 (with a quantification limits of 32.5 ng mL?1) which is lower than those of previously reported methods for solid-phase extraction combined with CE. The recoveries of OTA from urine spiked at levels of 50, 150 and 300 ng mL?1 ranged from 93 to 97 %.
Figure
?  相似文献   

17.
An electrochemical sensor for palytoxin (PlTX) detection, based on a strip of eight screen-printed electrodes connected to a cost-effective and portable apparatus, is reported. Sheep erythrocytes were used to test the palytoxin detector and degree of haemolysis was evaluated by measuring release of the cytosolic lactate dehydrogenase (LDH). Percentage haemolysis and, therefore, the amount of LDH measured, by use of NADH/pyruvate and appropriate electrochemical mediators, was correlated with the concentration of the toxin. Two different electrochemical approaches were investigated for evaluation of LDH release, but only one based on the use of a binary redox mediator sequence (phenazine methosulfate in conjugation with hexacyanoferrate(III)) proved useful for our purpose. After analytical and biochemical characterization, the sensor strip was used to measure palytoxin. Sheep blood and standard solutions of PlTX were left to react for two different incubation times (24 h or 4 h), resulting in working ranges of 7?×?10?3–0.02 ng mL?1 and 0.16–1.3 ng mL?1, respectively. The specificity of the test for palytoxin was evaluated by use of ouabain, which acts in the same way as PlTX on the Na+/K+-ATPase pump. A cross-reactivity study, using high concentrations of other marine biotoxins was also conducted. Experiments to evaluate the matrix effect and recovery from mussels are discussed.
Figure
?  相似文献   

18.
We have modified a glassy carbon electrode (GCE) with a film of poly(3-thiophene boronic acid), gold nanoparticles and graphene, and an antibody (Ab) was immobilized on its surface through the covalent bond formed between the boronic acid group and the glycosyl groups of the Ab. Subgroup J of avian leukosis viruses (ALV-J) were electrochemically determined with the help of this electrode. There is a linear relationship between the electron transfer resistance (R et) and the concentration of ALV-J in the range from 527 to 3,162 TCID50?mL?1 (where TCID50 is the 50?% tissue culture infective dose). The detection limit is 210 TCID50?mL?1 (at an S/N of 3), and the correlation coefficient (R) is 0.9964. The electrochemical immunoassay showed good selectivity, stability and reproducibility.
Figure
Schematic illustration of the stepwise immunosensor fabrication process  相似文献   

19.
The anti-schizophrenic drug risperidone (RSP) exerts an inhibitory effect on the chemiluminescence (CL) of the luminol-lysozyme system. This finding forms the basis for a sensitive flow injection method for its determination at picogram levels. RSP binds to Trp62 in the lysozyme, and this leads to a conformational change upon which the CL of the system is quenched. The decrease in CL is proportional to the logarithm of the concentration of RSP, and the calibration graph is linear in the range from 0.1 pg?mL?1 to 1.0 ng?mL?1, with relative standard deviations of <5.0%, and a detection limit of 0.05 pg?mL?1 (3σ). At a flow rate of 2.0 mL?min?1, the whole process including sampling and washing is completed within 20 s. The method was successfully applied to monitoring RSP in human urine after incorporation of 2 mg of RSP, with a total excretion of 16.6% within 8.5 h.
Figure
The reaction of lysozyme with risperidone using luminol as luminescence reagent by the luminol-lysozyme FI-CL system and its application.  相似文献   

20.
We report on the use of hollow fiber liquid-liquid-liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples. The effects of pH of the donor phase, stirring rate, ionic strength and extraction time on HF-LLLME were optimized. Under the optimized conditions, the linear range of the calibration curves for dextromethorphan in plasma and urine, respectively, are from 1.5 to 150 and from 1 to 100 ng mL?1. The ranges for pseudoephedrine, in turn, are from 30 to 300 and from 20 to 200 ng mL?1. Correlation coefficients are better than 0.9903. The limits of detection are 0.6 and 0.3 ng mL?1 for dextromethorphan, and 8.6 and 4.2 ng mL?1 for pseudoephedrine in plasma and urine samples, respectively. The relative standard deviations range from 6 to 8%.
Figure
Hollow fiber liquid–liquid–liquid microextraction (HF-LLLME) followed by corona discharge ion mobility spectrometry (CD-IMS) was used for the determination of dextromethorphan and pseudoephedrine in urine and plasma samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号