首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The total synthesis of the bicyclic C-nucleoside malayamycin A is described starting with d-ribonolactone. A new method was developed to obtain preparatively important quantities of β-pseudouridine, which was used as an intermediate. The synthesis of a carba N-nucleoside analogue of malayamycin A is also described.  相似文献   

2.
Monitoring gene expression in vivo is essential to the advancement of biological studies, medical diagnostics, and drug discovery. Adding to major efforts in developing molecular probes for mRNA monitoring, we have recently developed an alternative tool, the hybrid molecular probe (HMP). To optimize the probe, a series of experiments were performed to study the properties of HMP hybridization kinetics and stability. The results demonstrated the potential of the HMP as a prospective tool for use in both hybridization studies and in vitro and in vivo analyses. The HMP has shown no tendency to produce false positive signals, which is a major concern for living cell studies. Moreover, HMP has shown the ability to detect the mRNA expression of different genes inside single cells from both basal and stimulated genes. As an effective alternative to conventional molecular probes, the proven sensitivity, simplicity, and stability of HMPs show promise for their use in monitoring mRNA expression in living cells. Figure Hybrid molecular probe (HMP). HMPs consist of two single strands of DNA (green) and a polyethylene glycol (PEG, purple) linker that is used to tether these two sequences together. When a target (orange strand) containing the complementary sequences to both probes at adjacent positions is added, each strand binds to its corresponding target sequence, thus bringing the two fluorophores into close proximity, which allows energy transfer to occur  相似文献   

3.
Structural Chemistry - Kinesin Eg5 plays an essential role in the early stages of mitosis, and it is an interesting drug target for the design of potent inhibitors. In this work, combined molecular...  相似文献   

4.
GABA is a major neurotransmitter in the central nervous system. Data on GABA and its analogues calculated by using the ab initio and the MNDO method were compared with data obtained experimentally. The structures of GABA analogues calculated by the ab initio method agree well with the experimental data. This finding suggests the high reliability of this method. However, the structures of GABA analogues calculated by the MNDO method reflect only some aspects of the experimental data. Therefore the MNDO method should be used only for carefully selected chemical compounds.

The amino group in GABA and its analogues was proved to be the major active site. The electrostatic potential around the amino group in these compounds seems to be related to their biological activity. The difference in the electrostatic potential between the receptor binding molecules and the neuronal uptake molecules suggests that the structure of post-synaptic receptors might differ from that of uptake receptors. This finding suggests that there are at least two GABA-A receptors. GABA molecules seem to have a high potential for binding to the two receptors because they are highly flexible and can readily change their conformation. These results indicate a high reliability of the data calculated by the molecular orbital method and suggest that this method provides us with useful information that cannot be obtained experimentally.  相似文献   


5.
Fluorescence polarization measurements of bifunctional rhodamine (BR) probes provide a powerful approach to determine the in situ orientation of proteins within ordered complexes such as muscle fibers. For accurate interpretation of fluorescence measurements, it is important to understand the probe dynamics relative to the protein to which it is attached. We previously determined the structure of the N-domain of chicken skeletal troponin C, BR-labeled on the C helix, in complex with the switch region of troponin I, and demonstrated that the probe does not perturb the structure or dynamics of the protein. In this study, the motion of the fluorescence label relative to the protein has been characterized using NMR relaxation measurements of 13C-labeled methyl groups on the BR probe and 15N-labeled backbone amides of the protein. Probe dynamics were monitored using off-resonance 13C-R(1rho), 13C-R(1) and {1H}-13C NOE at magnetic field strengths of 500, 600, and 800 MHz. Relaxation data were interpreted in terms of the overall rotational correlation time of the protein and a two-time scale model for internal motion of the BR methyl groups, using a numerical optimization with Monte Carlo parameter error estimation. The analysis yields a 1.5 +/- 0.4 ps correlation time for rotation around the three-fold methyl symmetry axis, and a 0.8 +/- 0.4 ns rotational correlation time for reorientation of the 13C-14N bond with an associated S2s of 0.79 +/- 0.03. Order parameters of the backbone NH vectors in the helix to which the probe is attached average S2 approximately 0.85, implying that the amplitude of independent reorientation of the BR probe is small in magnitude, consistent with results from fluorescence polarization measurements in reconstituted muscle fibers.  相似文献   

6.
The solvation dynamics of a protein are believed to be sensitive to its secondary structures. We have explored such sensitivity in this article by performing room temperature molecular dynamics simulation of an aqueous solution of lysozyme. Nonuniform long-time relaxation patterns of the solvation time correlation function for different segments of the protein have been observed. It is found that relatively slower long-time solvation components of the α-helices and β-sheets of the protein are correlated with lower exposure of their polar probe residues to bulk solvent and hence stronger interactions with the dynamically restricted surface water molecules. These findings can be verified by appropriate experimental studies.  相似文献   

7.
A novel total synthesis of apratoxin A is described, with key steps including the assembly of its ketide segment through a D-proline-catalyzed direct aldol reaction and Oppolzer's anti aldol reaction and the preparation of its thiazoline unit in a biomimetic synthesis. An oxazoline analogue of apratoxin A has also been elaborated by a similar approach. This compound has a potency against HeLa cell proliferation only slightly lower than that of apratoxin A, whilst a C(40)-demethylated oxazoline analogue of apratoxin A displays a much lower cytotoxicity and the C(37)-epimer and C(37) demethylation product of this new analogue are inactive. These results suggest that the two methyl groups at C(37) and C(40) and the stereochemistry at C(37) are essential for the potent cellular activity of the oxazoline analogue of apratoxin A. Further biological analysis revealed that both synthetic apratoxin A and its oxazoline analogue inhibited cell proliferation by causing cell cycle arrest in the G1 phase.  相似文献   

8.
A coumarin derivative was employed for the detection of biogenic amines in buffered aqueous solution by UV-Vis or fluorescence spectroscopy. Incorporated in a polymeric matrix, the dye can also be used for the optical detection of gaseous amines.  相似文献   

9.
10.
The ATP-dependent bacterial MurD enzyme catalyses the formation of the peptide bond between cytoplasmic intermediate UDP-N-acetylmuramoyl-L-alanine and D-glutamic acid. This is essential for bacterial cell wall peptidoglycan synthesis in both Gram-positive and Gram-negative bacteria. MurD is recognized as an important target for the development of new antibacterial agents. In the present study we prepared the 3D-stucture of the catalytic pocket of the Staphylococcus aureus MurD enzyme by homology modelling. Extra-precision docking, binding free energy calculation by the MM–GBSA approach and a 40 ns molecular dynamics (MD) simulation of 2-thioxothiazolidin-4-one based inhibitor $1 was carried out to elucidate its inhibition potential for the S. aureus MurD enzyme. Molecular docking results showed that Lys19, Gly147, Tyr148, Lys328, Thr330 and Phe431 residues are responsible for the inhibitor–protein complex stabilization. Binding free energy calculation revealed electrostatic solvation and van der Waals energy components as major contributors for the inhibitor binding. The inhibitor-modelled S. aureus protein complex had a stable conformation in response to the atomic flexibility and interaction, when subjected to MD simulation at 40 ns in aqueous solution. We designed some molecules as potent inhibitors of S. aureus MurD, and to validate the stability of the designed molecule D1-modelled protein complex we performed a 20 ns MD simulation. Results obtained from this study can be utilized for the design of potent S. aureus MurD inhibitors.  相似文献   

11.
Probe-based scanning microscopes, such as the STM and the AFM, are used to obtain the topographical and electronic structure maps of material surfaces, and to modify their morphologies on nanoscopic scales. They have generated new areas of research in condensed matter physics and materials science. We will review some examples from the fields of experimental nano-mechanics, nano-electronics and nano-magnetism. These now form the basis of the emerging field of Nano-technology. A parallel development has been brought about in the field of Computational Nano-science, using quantum-mechanical techniques and computer-based numerical modelling, such as the Molecular Dynamics (MD) simulation method. We will report on the simulation of nucleation and growth of nano-phase films on supporting substrates. Furthermore, a theoretical modelling of the formation of STM images of metallic clusters on metallic substrates will also be discussed within the non-equilibrium Keldysh Green function method to study the effects of coherent tunnelling through different atomic orbitals in a tip-sample geometry.  相似文献   

12.
In vitro evolution techniques allow RNA molecules with unique functions to be developed. However, these techniques do not necessarily identify the simplest RNA structures for performing their functions. Determining the simplest RNA that binds to a particular ligand is currently limited to experimental protocols. Here, we introduce a molecular-mechanics based algorithm employing molecular dynamics simulations and free-energy methods to predict the minimum sequence requirements for selective ligand binding to RNA. The algorithm involves iteratively deleting nucleotides from an experimentally determined structure of an RNA-ligand complex, performing energy minimizations and molecular dynamics on each truncated structure, and assessing which truncations do not prohibit RNA binding to the ligand. The algorithm allows prediction of the effects of sequence modifications on RNA structural stability and ligand-binding energy. We have implemented the algorithm in the AMBER suite of programs, but it could be implemented in any molecular mechanics force field parameterized for nucleic acids. Test cases are presented to show the utility and accuracy of the methodology.  相似文献   

13.
In this report, the main contributions of FMN were employed in the reductive cleavage reaction of AzrC protein (as a member of azoreductase family). Molecular dynamics simulations of three models in the presence and absence of FMN and ligand were performed to gather information about the dynamic nature of active site residues of AzrC. Combination of pairwise decomposition and alanine scanning calculations provides critical information about the FMN binding sites. The MD results analyzed by alanine scanning method revealed the high negative scores for N 10 (A) A, N 12 (A) A, S 17 (A) A and Y 151 (A) A mutations, which were in agreement with pairwise decomposition analyses. Hydrogen bond analyses indicated that these residues play critical roles in establishing appropriate hydrogen bonds between AzrC and FMN. Negative energy results for nonpolar residues such as W 103 (A), M 102 (A) and F 105 (A) and binding free energy analyses of three complexes indicate that the VDW interactions could be regarded as some favorable contribution in FMN and AzrC protein and confirmed the critical role of FMN in ligand binding (35.84 %), in addition to its catalytic function. This information could be used for future experimental investigations.  相似文献   

14.
15.
The molecular probe N-methyl-6-quinolone (MQ) gives experimental access to its local chemical environment, e.g. inside a biomolecule. Using ab initio molecular dynamics (MD), it is possible to simulate the time evolution of the Stokes shift as a function of the actual atomistic coupling to the surrounding hydrogen bond network and thus obtain a comprehensive view of the local environment. In contrast to ground state ab initio MD simulations, the choice of a method for excited state MD is nontrivial. Here, we develop a simple and accurate model for the solvation dynamics of MQ in its first excited state.  相似文献   

16.
Recently, the importance of proline ring pucker conformations in collagen has been suggested in the context of hydroxylation of prolines. The previous molecular mechanics parameters for hydroxyproline, however, do not reproduce the correct pucker preference. We have developed a new set of parameters that reproduces the correct pucker preference. Our molecular dynamics simulations of proline and hydroxyproline monomers as well as collagen-like peptides, using the new parameters, support the theory that the role of hydroxylation in collagen is to stabilize the triple helix by adjusting to the right pucker conformation (and thus the right phi angle) in the Y position.  相似文献   

17.
Hydrolysis of cisplatin, the most widely used anticancer drug in the world, is believed to be the key activation step before the drug reaching its intracellular target DNA.To obtain an accurate hydrolysis theory for this important class of square-planar Pt(II) complexes, three typical reactions, i.e., the first and second hydrolyses of cisplatin and the hydrolysis of [Pt(dien)Cl](+) (dien = diethylenetriamine), were studied at the experimental temperature with the solvent effect using mPW1PW91/SDD from a comprehensive methodological study on the Hartree-Fock (HF) ab initio method, electron correlation methods, pure density functional theory (DFT) methods, and hybrid HF-DFT methods with several basis sets. The true five stationary states in the second-order nucleophilic substitution (S(N)2) pathway for the hydrolysis process, namely, reactant (R) --> intermediate 1 (I1) --> TS --> intermediate 2 (I2) --> product (P) were obtained and characterized theoretically for the first time. The most remarkable structural variations and the associated atomic charge variations in the hydrolysis process were found to occur in the equatorial plane of the five-coordinate trigonal-bipyramidal (TBP)-like structures of I1, TS, and I2. The reaction with the TS structure of smaller L-M-E angle and more lengthened M-L and M-E bonds was found to have a smaller Gibbs free energy change and accordingly the better hydrolysis yield. It is found that the sum of the three concentric angles in the TBP's equator is near 360 degrees in I1 and I2 and is almost 360 degrees in TS in each reaction. The associated energy profiles again demonstrated a typical S(N)2 reaction curve. The computed forward and backward reaction enthalpy (Delta H(++)) and reaction entropy (Delta S(++)) in the rate-determining step I1 --> TS --> I2 are in good agreement with the experiments. Natural bonding orbital population analysis shows that the charge-separating extent follows the same order of Delta G in studied reactions. Comparing with the computational results of gas-phase reactions, it can be concluded that the solvent effect should be considered to obtain an accurate hydrolysis picture. The most affected structural parameters after solvation are related to the equatorial plane of the TBP-like geometry. The results provide theoretical guidance on detailed understanding on the mechanism of the hydrolysis of cisplatin, which could be useful in the design of novel Pt-based anticancer agents.  相似文献   

18.
The results of an investigation into the fungicidal properties of some organotin(IV) compounds with Mono-methyl phthalate are reported. The compounds were characterized by various spectroscopic techniques including 1H-13C-119Sn-NMR, FT-IR, and 119Sn Mössbauer studies. On the basis of these techniques, all the complexes show penta coordination with a trigonal bipyramidal environment around the tin. The synthesized compounds were tested against a number of plant pathogenic fungi. The fungicidal data reveal that the tri-phenyltin(IV) compound proves to be a powerful fungicide. Comparison between the fungicidal activity of the trialkyltin(IV) compounds shows that the tri-phenyl tin(IV) complex is most active against all plant pathogens; the rest of the complexes also exhibit significant antifungal activity but less than the former one.  相似文献   

19.
The equilibrium geometry, ring-inversion barrier, and pathway for heterocyclic analogues of cyclohexene have been studied using the MP2/6-311G(d,p) level of theory. It is concluded that the replacement of one methylene group in cyclohexene by heteroatom results in significant changes in the character of the potential-energy surface in comparison with cyclohexene. The equilibrium conformation of ring strongly depends on the position of the heteroatom due to the existence of the n-pi conjugation. However, the character of the ring-inversion process is determined by the nature of the heteroatom. In the case of sulfur- and selenium-containing rings, the boat or twist-boat conformation corresponds to an additional minimum on the potential-energy surface. Moreover, the barriers of the conformational transition from this conformer to two different half-chair forms are significantly different. Nitrogen-containing heterocycles possess two pairs of minima corresponding to the different configurations of the nitrogen atom. However, the transition between the two minima with the same configuration of the heteroatom proceeds only in two steps that include ring inversion and nitrogen inversion.  相似文献   

20.
The highly sensitive technique of spin-probe Electron Spin Resonance (ESR) has been used to study dynamics of carbon nanotubes. The ESR signals were recorded for the nitroxide free radical TEMPO in carbon nanotubes from 5 to 300 K. The onset of the fast dynamics of the probe molecule was indicated by appearance of a narrow triplet at 230 K. The ESR measurements were also done on TEMPO in methanol for the comparative studies in the same temperature range, and in the latter observations, no change in spectra was seen around 230 K. The results indicate the occurrence of a change in the dynamics of carbon nanotubes around this temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号