首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although multiple charging in electrospray ionization (ESI) is essential to protein mass spectrometry, the underlying mechanism of multiple charging has not been explicated. Here, we present a new theory to describe ESI of native-state proteins and predict the number of excess charges on proteins in ESI. The theory proposes that proteins are ionized as charged residues in ESI, as they retain residual excess charges after solvent evaporation and do not desorb from charged ESI droplets. However, their charge state is not determined by the Rayleigh limit of a droplet of similar size to the protein; rather, their final charge state is determined by the electric field-induced emission of small charged solute ions and clusters from protein-containing ESI droplets. This theory predicts that the number of charges on a protein in ESI should be directly proportional to the square of the gas-phase protein diameter and to E*, the critical electric field strength at which ion emission from droplets occurs. This critical field strength is determined by the properties of the excess charge carriers (i.e., the solute) in droplets. Charge-state measurements of native-state proteins with molecular masses in the 5-76 kDa range in ammonium acetate and triethylammonium bicarbonate are in excellent agreement with theoretical predictions and strongly support the mechanism of protein ESI proposed here.  相似文献   

2.
The conformation dependence of protein spectra recorded by electrospray ionization mass spectrometry (ESI-MS) is an interesting and useful phenomenon, whose origin is still the object of debate. Different mechanisms have been invoked in the attempt to explain the lower charge state of folded versus unfolded protein ions in ESI-MS, such as electrostatic repulsions, solvent accessibility, charge availability, and native-like interactions. In this work we try to subject to direct experimental test the hypothesis that conformation-dependent neutralization of charges with polarity opposite to the net charge of the protein ion could play a critical role in such an effect. We present results of time-of-flight nano-ESI-MS on the peptide angiotensin II, indicating that negative charges of carboxylate groups can contribute to spectra recorded in positive-ion mode when stabilized by favorable electrostatic interactions, which is the central assumption of our hypothesis. Comparison of horse and spermwhale myoglobin (Mb) shows that changing the total number of basic residues within a given three-dimensional structure shifts the charge-state distribution (CSD) of the folded protein in positive-ion mode. This result appears to be in contrast to models in which electrostatic repulsions or availability of charges in the ESI droplets represent the limiting factor for the ionization of folded protein ions in ESI-MS. At the same time, it suggests a role of acidic residues in conformational effects in positive-ion mode. Furthermore, an attempt is made to rationalize those cases in which, in contrast, the main charge state observed in ESI-MS under non-denaturing conditions deviates considerably from the net charge expected on the basis of the amino-acid composition. These cases usually correspond to proteins with quite balanced content in basic and acidic residues, suggesting that this might be a factor influencing their charging behavior in ESI-MS. Experiments on mutants of ribonuclease Sa (RNase Sa) reveal that progressively reducing the excess of acidic residues, replacing them by lysine, causes almost no shift in the spectrum of the folded protein in negative-ion mode. Analogously, variants with an excess of three or five basic residues give similar spectra in positive-ion mode. These results indicate a lower limit to the extent of ionization observable by ESI-MS (6- or 8+ in the case of RNase Sa in water). Below such limit of net charge, changes in the relative amount of ionizable side chains do not affect the qualitative features of the observed CSDs. A progressive loss of signal intensity caused by the mutations in negative-ion mode suggests that low charge states might also be counterselected, even within the m/z range theoretically accessible to the instrument.  相似文献   

3.
The electrospray ionization (ESI) charge state distribution of proteins is highly sensitive to the protein structure in solution. Unfolded conformations generally form higher charge states than tightly folded structures. The current study employs a minimalist molecular dynamics model for simulating the final stages of the ESI process in order to gain insights into the physical reasons underlying this empirical relationship. The protein is described as a string of 27 beads ("residues"), 9 of which are negatively charged and represent possible protonation sites. The unfolded state of this bead string is a random coil, whereas the native conformation adopts a compact fold. The ESI process is simulated by placing the protein inside a solvent droplet with a 2.5 nm radius consisting of 1600 Lennard-Jones particles. In addition, the droplet contains 14 protons which are modeled as highly mobile point charges. Disintegration of the droplet rapidly releases the protein into the gas phase, resulting in average charge states of 4.8+ and 7.4+ for the folded and unfolded conformation, respectively. The protonation probabilities of individual residues in the folded state reveal a characteristic pattern, with values ranging from 0.2 to 0.8. In contrast, the protonation probabilities of the unfolded protein are more uniform and cover the range from 0.8 to 1.0. The origin of these differences can be traced back to a combination of steric and electrostatic effects. Residues exhibiting a small accessible surface area are less likely to capture a proton, an effect that is exacerbated by partial electrostatic shielding from nearby positive residues. Conversely, sites that are sterically exposed are associated with electrostatic funnels that greatly increase the likelihood of protonation. Unfolding enhances the steric and electrostatic exposure of protonation sites, thereby causing the protein to capture a greater number of protons during the droplet disintegration process.  相似文献   

4.
The relationship between gas-phase protein structure and ion/molecule reactivity is explored in comparisons between native and disulfide-reduced aprotinin, lysozyme, and albumin. Reactions are performed in the atmospheric-pressure inlet to a quadrupole mass spectrometer employing a novel capillary interface-reactor. In reactions with equal concentrations of diethylamine, multiply protonated molecules generated by electrospray ionization (ESI) of 'native' proteins shifted to lower charge states than did multiply protonated molecules from ESI of the disulfide-reduced counterparts, suggesting that the disulfide-reduced protein ions are less reactive than native protein ions of the same charge state. Differences in reactivity may arise from protonation of different amino acid residues and/or differences in the proximities of charge sites in the two molecules. These results suggest that the reactivity of multiply charged proteins can be significantly affected by their gas-phase structure.  相似文献   

5.
We use a charge reduction electrospray (ESI) source and subsequent ion mobility analysis with a differential mobility analyzer (DMA, with detection via both a Faraday cage electrometer and a condensation particle counter) to infer the densities of single and multiprotein ions of cytochrome C, lysozyme, myoglobin, ovalbumin, and bovine serum albumin produced from non-denaturing (20 mM aqueous ammonium acetate) and denaturing (1?:?49.5?:?49.5, formic acid?:?methanol?:?water) ESI. Charge reduction is achieved through use of a Po-210 radioactive source, which generates roughly equal concentrations of positive and negative ions. Ions produced by the source collide with and reduce the charge on ESI generated drops, preventing Coulombic fissions, and unlike typical protein ESI, leading to gas-phase protein ions with +1 to +3 excess charges. Therefore, charge reduction serves to effectively mitigate any role that Coulombic stretching may play on the structure of the gas phase ions. Density inference is made via determination of the mobility diameter, and correspondingly the spherical equivalent protein volume. Through this approach it is found that for both non-denaturing and denaturing ESI-generated ions, gas-phase protein ions are relatively compact, with average densities of 0.97 g cm(-3) and 0.86 g cm(-3), respectively. Ions from non-denaturing ESI are found to be slightly more compact than predicted from the protein crystal structures, suggesting that low charge state protein ions in the gas phase are slightly denser than their solution conformations. While a slight difference is detected between the ions produced with non-denaturing and denaturing ESI, the denatured ions are found to be much more dense than those examined previously by drift tube mobility analysis, in which charge reduction was not employed. This indicates that Coulombic stretching is typically what leads to non-compact ions in the gas-phase, and suggests that for gas phase measurements to be correlated to biomolecular structures in solution, low charge state ions should be analyzed. Further, to determine if different solution conditions give rise to ions of different structure, ions of similar charge state should be compared. Non-denatured protein ion densities are found to be in excellent agreement with non-denatured protein ion densities inferred from prior DMA and drift tube measurements made without charge reduction (all ions with densities in the 0.85-1.10 g cm(-3) range), showing that these ions are not strongly influenced by Coulombic stretching nor by analysis method.  相似文献   

6.
Proton transfer reaction of multiply charged ions at high mass-to-charge ratios were explored with a low frequency quadrupole mass spectrometer. This instrument enabled a qualitative comparison of proton transfer reaction rates at low charge states for ions generated by electrospray ionization (ESI) from different solution conformations and for disulfide-linked versus disulfide-reduced protein ions. Proton transfer reactions that efficiently reduced the number of charges for ESI-generated ions to approximately the number of arginines in the polypeptide sequence were observed. No significant differences in gas-phase reaction rates were noted between different solution conformers. Differences in reaction rates between “native” and disulfide-reduced proteins were much smaller than those observed below m/z 2000 with lower proton affinity reagents or by using lower reagent concentrations. These smaller differences in reaction rates are thought to reflect the reduced electrostatic contributions from widely spaced charge sites and thus, the reduced sensitivity to an ion's three-dimensional structure or “compactness.”  相似文献   

7.
This paper reports notable observations regarding the ion charge states of thermally stable cytochrome c, generated using an alternating current (AC) electrospray ionization (ESI) device. An AC ESI sprayer entrains low-mobility ions to accumulate at the meniscus cone tip prior to the ejection of detached aerosols to produce analyte ions. Therefore, as the solvent acidity varies, protein ions entrained in the AC cone tip are found to change conformation less significantly compared with those in the direct current (DC) cone. We acquired the AC ESI mass spectra of cytochrome c at pH range from 2 to 4. Unlike the DC ESI mass spectra showing clear conformation changes due to denaturing, the AC spectra indicated that only partial denaturing occurs even at extremely acidic pH 2. More native cytochrome c in lower charge states therefore remained. Moreover, with a solvent mixture of aqueous buffer and acetonitrile (70:30), partially denatured cytochrome c was still preserved at pH 2 by using AC ESI. Completely denatured proteins are observed at pH 2 by using DC ESI.  相似文献   

8.
Electrospray ionization (ESI) mass spectrometry (MS) in both the positive and negative ion mode has been used to study protein unfolding transitions of lysozyme, cytochrome c (cyt c), and ubiquitin in solution. As expected, ESI of unfolded lysozyme leads to the formation of substantially higher charge states than the tightly folded protein in both modes of operation. Surprisingly, the acid-induced unfolding of cyt c as well as the acid and the base-induced unfolding of ubiquitin show different behavior: In these three cases protein unfolding only leads to marginal changes in the negative ion charge state distributions, whereas in the positive ion mode pronounced shifts to higher charge states are observed. This shows that ESI MS in the negative ion mode as a method for probing conformational changes of proteins in solution should be treated with caution. The data presented in this work provide further evidence that the conformation of a protein in solution not its charge state is the predominant factor for determining the ESI charge state distribution in the positive ion mode. Furthermore, these data support the hypothesis of a recent study (Konermann and Douglas, Biochemistry 1997, 36, 12296–12302) which suggested that ESI in the positive ion mode is not sensitive to changes in the secondary structure of proteins but only to changes in the tertiary structure.  相似文献   

9.
Addition of 1.0?mM LaCl3 to aqueous ammonium acetate solutions containing proteins in their folded native forms can result in a significant increase in the molecular ion charging obtained with electrospray ionization as a result of cation adduction. In combination with m-nitrobenzyl alcohol, molecular ion charge states that are greater than the number of basic sites in the protein can be produced from these native solutions, even for lysozyme, which is conformationally constrained by four intramolecular disulfide bonds. Circular dichroism spectroscopy indicates that the conformation of ubiquitin is not measurably affected with up to 1.0?M LaCl3, but ion mobility data indicate that the high charge states that are formed when 1.0?mM LaCl3 is present are more unfolded than the low charge states formed without this reagent. These and other results indicate that the increased charging is a result of La3+ preferentially adducting onto compact or more native-like conformers during ESI and the gas-phase ions subsequently unfolding as a result of increased Coulomb repulsion. Electron capture dissociation of these high charge-state ions formed from these native solutions results in comparable sequence coverage to that obtained for ions formed from denaturing solutions without supercharging reagents, making this method a potentially powerful tool for obtaining structural information in native mass spectrometry.  相似文献   

10.
Electrospray mass spectrometric studies in native folded forms of several proteins in aqueous solution have been performed in the positive and negative ion modes. The mass spectra of the proteins show peaks corresponding to multiple charge states of the gaseous protein ions. The results have been analyzed using the known crystal structures of these proteins. Crystal structure analysis shows that among the surface exposed residues some are involved in hydrogen-bonding or salt-bridge interactions while some are free. The maximum positive charge state of the gaseous protein ions was directly related to the number of free surface exposed basic groups whereas the maximum negative charge state was related to the number of free surface exposed acidic groups of the proteins. The surface exposed basic groups, which are involved in hydrogen bonding, have lower propensity to contribute to the positive charge of the protein. Similarly, the surface exposed acidic groups involved in salt bridges have lower propensity to contribute to the negative charge of the protein. Analysis of the crystal structure to determine the maximum charge state of protein in the electrospray mass spectrum was also used to interpret the reported mass spectra of several proteins. The results show that both the positive and the negative ion mass spectra of the proteins could be interpreted by simple consideration of the crystal structure of the folded proteins. Moreover, unfolding of the protein was shown to increase the positive charge-state because of the availability of larger number of free basic groups at the surface of the unfolded protein.  相似文献   

11.
The formation of ions from the charged droplets produced in the several spray ionization techniques is viewed as an activated rate process involving field-assisted desorption, in accord with the ideas first set forth by Iribame and Thomson. The novel features of the present treatment are particularly relevant to the unique ability of electrospray ionization to transform large molecules in solution to free ions in the gas phase, with extensive multiple charging. These new features stem mainly from the realization that the spacing of charges on a desorbed ion must relate to the spacing of charges on the surface of the droplet whence it came. The consequences of this “rule” can account for the existence of maxima and minima in the number of charges on the ions of a particular species as well as the nature of the distribution of ions among the intervening charge states. They also explain the dependence of charge state on the configuration in solution of the parent molecule of the desorbed ion. In addition, they provide insight into the sequence in time at which ions in the various charge states leave an evaporating droplet.  相似文献   

12.
The methanol-induced conformational transitions under acidic conditions for beta-lactoglobulin, cytochrome c, and ubiquitin, representing three different classes of proteins with beta-sheets, alpha-helices, and both alpha-helices and beta-sheets, respectively, are studied under equilibrium conditions by electrospray ionization mass spectrometry (ESI-MS). The folding states of proteins in solution are monitored by the charge state distributions that they produce during ESI and by hydrogen/deuterium (H/D) exchange followed by ESI-MS. The changes in charge state distributions are correlated with earlier studies by optical and other methods which have shown that, in methanol, these proteins form partially unfolded intermediates with induced alpha-helix structure. Intermediate states formed at about 35% methanol concentration are found to give bimodal charge state distributions. The same rate of H/D exchange is shown by the two contributions to the bimodal distributions. This suggests the intermediates are highly flexible and may consist of a mixture of two or more rapidly interconverting conformers. H/D exchange of proteins followed by ESI-MS shows that helical denatured states, populated at around 50% methanol concentration, transform into more protected structures with further increases in methanol concentration, consistent with previous circular dicroism studies. These more protected structures still produce high charge states in ESI, similar to those of the fully denatured proteins.  相似文献   

13.
Manipulation for simplifying or increasing the observed charge state distributions of proteins can be highly desirable in mass spectrometry experiments. In the present work, we implemented a vapor introduction technique to an Agilent Jet Stream ESI (Agilent Technologies, Santa Clara, CA, USA) source. An apparatus was designed to allow for the enrichment of the nitrogen sheath gas with basic vapors. An optical setup, using laser-induced fluorescence and a pH-chromic dye, permits the pH profiling of the droplets as they evaporate in the electrospray plume. Mechanisms of pH droplet modification and its effect on the protein charging phenomenon are elucidated. An important finding is that the enrichment with basic vapors of the nitrogen sheath gas, which surrounds the nebulizer spray, leads to an increase in the spray current. This is attributed to an increase in the electrical conductivity of water-amine enriched solvent at the tip exit. Here, the increased current results in a generation of additional electrolytically produced OH(-) ions and a corresponding increase in the pH at the tip exit. Along the electrospray plume, the pH of the droplets increases due to both droplet evaporation and exposure to basic vapors from the seeded sheath gas. The pH evolution in the ESI plume obtained using pure and basic seeded sheath gas was correlated with the evolution of the charge state distribution observed in mass spectra of proteins, in the negative ion mode. Taking advantage of the Agilent Jet Stream source geometry, similar protein charge state distributions and ion intensities obtained with basic initial solutions, can be obtained using native solution conditions by seeding the heated sheath gas with basic vapors.  相似文献   

14.
Dissociation of gas-phase protonated protein dimers into their constituent monomers can result in either symmetric or asymmetric charge partitioning. Dissociation of alpha-lactalbumin homodimers with 15+ charges results in a symmetric, but broad, distribution of protein monomers with charge states centered around 8+/7+. In contrast, dissociation of the 15+ heterodimer consisting of one molecule in the oxidized form and one in the reduced form results in highly asymmetric charge partitioning in which the reduced species carries away predominantly 11+ charges, and the oxidized molecule carries away 4+ charges. This result cannot be adequately explained by differential charging occurring either in solution or in the electrospray process, but appears to be best explained by the reduced species unfolding upon activation in the gas phase with subsequent separation and proton transfer to the unfolding species in the dissociation complex to minimize Coulomb repulsion. For dimers of cytochrome c formed directly from solution, the 17+ charge state undergoes symmetric charge partitioning whereas dissociation of the 13+ is asymmetric. Reduction of the charge state of dimers with 17+ charges to 13+ via gas-phase proton transfer and subsequent dissociation of the mass selected 13+ ions results in a symmetric charge partitioning. This result clearly shows that the structure of the dimer ions with 13+ charges depends on the method of ion formation and that the structural difference is responsible for the symmetric versus asymmetric charge partitioning observed. This indicates that the asymmetry observed when these ions are formed directly from solution must come about due either to differences in the monomer conformations in the dimer that exist in solution or that occur during the electrospray ionization process. These results provide additional evidence for the origin of charge asymmetry that occurs in the dissociation of multiply charged protein complexes and indicate that some solution-phase information can be obtained from these gas-phase dissociation experiments.  相似文献   

15.
The addition of m-nitrobenzyl alcohol (m-NBA) was shown previously (Lomeli et al., J. Am. Soc. Mass Spectrom. 2009, 20, 593–596) to enhance multiple charging of native proteins and noncovalent protein complexes in electrospray ionization (ESI) mass spectra. Additional new reagents have been found to “supercharge” proteins from nondenaturing solutions; several of these reagents are shown to be more effective than m-NBA for increasing positive charging. Using the myoglobin protein-protoporphyrin IX (heme) complex, the following reagents were shown to increase ESI charging: benzyl alcohol, m-nitroacetophenone, m-nitrobenzonitrile, o-NBA, m-NBA, p-NBA, m-nitrophenyl ethanol, sulfolane (tetramethylene sulfone), and m-(trifluoromethyl)-benzyl alcohol. Based on average charge state, sulfolane displayed a greater charge increase (61%) than m-NBA (21%) for myoglobin in aqueous solutions. The reagents that promote higher ESI charging appear to have low solution-phase basicities and relatively low gas-phase basicities, and are less volatile than water. Another feature of mass spectra from some of the active reagents is that adducts are present on higher charge states, suggesting that a mechanism by which proteins acquire additional charge involves direct interaction with the reagent, in addition to other factors such as surface tension and protein denaturation.  相似文献   

16.
A fast and accurate method to compute the total solvation free energies of proteins as a function of pH is presented. The method makes use of a combination of approaches, some of which have already appeared in the literature; (i) the Poisson equation is solved with an optimized fast adaptive multigrid boundary element (FAMBE) method; (ii) the electrostatic free energies of the ionizable sites are calculated for their neutral and charged states by using a detailed model of atomic charges; (iii) a set of optimal atomic radii is used to define a precise dielectric surface interface; (iv) a multilevel adaptive tessellation of this dielectric surface interface is achieved by using multisized boundary elements; and (v) 1:1 salt effects are included. The equilibrium proton binding/release is calculated with the Tanford-Schellman integral if the proteins contain more than approximately 20-25 ionizable groups; for a smaller number of ionizable groups, the ionization partition function is calculated directly. The FAMBE method is tested as a function of pH (FAMBE-pH) with three proteins, namely, bovine pancreatic trypsin inhibitor (BPTI), hen egg white lysozyme (HEWL), and bovine pancreatic ribonuclease A (RNaseA). The results are (a) the FAMBE-pH method reproduces the observed pK a's of the ionizable groups of these proteins within an average absolute value of 0.4 p K units and a maximum error of 1.2 p K units and (b) comparison of the calculated total pH-dependent solvation free energy for BPTI, between the exact calculation of the ionization partition function and the Tanford-Schellman integral method, shows agreement within 1.2 kcal/mol. These results indicate that calculation of total solvation free energies with the FAMBE-pH method can provide an accurate prediction of protein conformational stability at a given fixed pH and, if coupled with molecular mechanics or molecular dynamics methods, can also be used for more realistic studies of protein folding, unfolding, and dynamics, as a function of pH.  相似文献   

17.
This paper describes a new method for the measurement of the role of interactions between charged groups on the energetics of protein folding. This method uses capillary electrophoresis (CE) and protein charge ladders (mixtures of protein derivatives that differ incrementally in number of charged groups) to measure, in a single set of electrophoresis experiments, the free energy of unfolding (DeltaG(D-N)) of alpha-lactalbumin (alpha-LA) as a function of net charge. These same data also yield the hydrodynamic radius, R(H), and net charge measured by CE, Z(CE), of the folded and denatured proteins. Alpha-LA unfolds to a compact denatured state under mildly alkaline conditions; a small increase in R(H) (11%, 2 A) coincides with a large increase in Z(CE) (71%, -4 charge units), relative to the folded state. The increase in Z(CE), in turn, predicts a large pH dependence of free energy of unfolding (-22 kJ/mol per unit increase in pH), due to differences in proton binding in the folded and denatured states. The free energy of unfolding correlates with the square of net charge of the members of the charge ladder. The differential dependence of DeltaG(D-N) on net charge for holo-alpha-LA, (partial differential) DeltaG(D-N)/(partial differential)Z = -0.14Z kJ/mol per unit of charge. This dependence of DeltaG(D-N) on net charge is a result of a net electrostatic repulsion among charge groups on the protein. These results, together with data from pH titrations, show that both the effects of electrostatic repulsion and differences in proton binding in the folded and denatured states can play an important role in the pH dependence of this protein; the relative magnitude of these effects varies with pH. The combination of charge ladders and CE is a rapid and efficient tool that measures the contributions of electrostatics to the energetics of protein folding, and the size and charge of proteins as they unfold. All this information is obtained from a single set of electrophoresis experiments.  相似文献   

18.
Acidic proteins and nucleic acids such as RNA are most readily ionized in electrospray ionization (ESI) operated in negative-ion mode. The multiply deprotonated protein or RNA ions can be used as precursors in top- down mass spectrometry. Because the performance of the dissociation method used critically depends on precursor ion negative net charge, it is important that the extent of charging in ESI can be manipulated efficiently. We show here that (M - nH)(n-) ion net charge of proteins and RNA can be controlled efficiently by the addition of organic bases to the electrosprayed solution. Our study also highlights the fact that ion formation in ESI in negative mode is only poorly understood.  相似文献   

19.
Effects of covalent intramolecular bonds, either native disulfide bridges or chemical crosslinks, on ESI supercharging of proteins from aqueous solutions were investigated. Chemically modifying cytochrome c with up to seven crosslinks or ubiquitin with up to two crosslinks did not affect the average or maximum charge states of these proteins in the absence of m-nitrobenzyl alcohol (m-NBA), but the extent of supercharging induced by m-NBA increased with decreasing numbers of crosslinks. For the model random coil polypeptide reduced/alkylated RNase A, a decrease in charging with increasing m-NBA concentration attributable to reduced surface tension of the ESI droplet was observed, whereas native RNase A electrosprayed from these same solutions exhibited enhanced charging. The inverse relationship between the extent of supercharging and the number of intramolecular crosslinks for folded proteins, as well as the absence of supercharging for proteins that are random coils in aqueous solution, indicate that conformational restrictions induced by the crosslinks reduce the extent of supercharging. These results provide additional evidence that protein and protein complex supercharging from aqueous solution is primarily due to partial or significant unfolding that occurs as a result of chemical and/or thermal denaturation induced by the supercharging reagent late in the ESI droplet lifetime.  相似文献   

20.
Almost all proteins contain charged amino acids. While the function in catalysis or binding of individual charges in the active site can often be identified, it is less clear how to assign function to charges beyond this region. Are they necessary for solubility? For reasons other than solubility? Can manipulating these charges change the properties of proteins? A combination of capillary electrophoresis (CE) and protein charge ladders makes it possible to study the roles of charged residues on the surface of proteins outside the active site. This method involves chemical modification of those residues to generate a large number of derivatives of the protein that differ in charge. CE separates those derivatives into groups with the same number of modified charged groups. By studying the influence of charge on the properties of proteins using charge ladders, it is possible to estimate the net charge and hydrodynamic radius and to infer the role of charged residues in ligand binding and protein folding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号