首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The repeated homogeneous balance is used to construct a new exact traveling wave solution of the Kadomtsev-Petviashvili (KP) like equation coupled to a Schrödinger equation, in which the homogeneous balance method is applied to solve the Riccati equation and the reduced nonlinear ordinary differential equation, respectively. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can be applied to other nonlinear evolution equations.  相似文献   

2.
In this paper, the bifurcations of solitary, kink and periodic waves for the generalized coupled Hirota–Satsuma KdV system are studied by using the bifurcation theory of planar dynamical systems. Bifurcation parameter sets are shown. Under given parameter conditions, explicit formulas for solitary wave solutions, kink wave solutions and periodic wave solutions are obtained.  相似文献   

3.
In this letter, a new auxiliary function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations. The main idea of this method is to take full advantage of the solutions of the elliptic equation to construct exact travelling wave solutions of nonlinear partial differential equations. More new exact travelling wave solutions are obtained for the generalized coupled Hirota–Satsuma KdV system.  相似文献   

4.
In this paper, by the application of hyperbolic function, triangle function and symbolic computation, we devise a new method to seek the exact travelling wave solutions of the nonlinear partial differential equations in mathematical physics. The generalized coupled Hirota–Satsuma KdV system is chosen to illustrate the approach. As a consequence, abundant new solitary and periodic solutions are obtained.  相似文献   

5.
In this paper, by using the integral bifurcation method, we study a generalized KdV equation which was first derived by Fokas from physical considerations via a methodology of Fuchssteiner. All kinds of soliton-like or kink-like wave solutions and periodic wave solutions with loop or without loop are obtained. Smooth compacton-like periodic wave solution and non-smooth periodic cusp wave solution are also obtained. Their dynamic properties are investigated and their profiles are given by Mathematical software.  相似文献   

6.
New exact solutions for a generalized variable-coefficient KdV equation were obtained using the generalized expansion method [R. Sabry, M.A. Zahran, E.G. Fan, Phys. Lett. A 326 (2004) 93]. The obtained solutions include solitary wave solutions besides Jacobi and Weierstrass doubly periodic wave solutions.  相似文献   

7.
A new Darboux transformation (DT) is presented for the Hirota–Satsuma coupled KdV system. It is shown that this DT can be constructed by means of two methods: Painlevé analysis and reduction of a binary DT. By iteration of the DT, the Grammian type solutions are found for the coupled KdV system.  相似文献   

8.
In this paper, we devise a simple way to explicitly construct the Riemann theta function periodic wave solution of the nonlinear partial differential equation. The resulting theory is applied to the Hirota–Satsuma shallow water wave equation. Bilinear forms are presented to explicitly construct periodic wave solutions based on a multidimensional Riemann theta function. We obtain the one‐periodic and two‐periodic wave solutions of the equation. The relations between the periodic wave solutions and soliton solutions are rigorously established. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
结合齐次平衡法原理并利用F展开法,再次研究了Zhiber-Shabat方程的各种椭圆函数周期解.当椭圆函数的模m分别趋于1或0时,利用这些椭圆函数周期解,得到了Zhiber-Shabat方程的各种孤子解和三角函数周期解,从而丰富了相关文献中关于Zhiber-Shabat波方程的解的类型.  相似文献   

10.
In this work, we study the two‐mode Korteweg–de Vries (TKdV) equation, which describes the propagation of two different waves modes simultaneously. We show that the TKdV equation gives multiple soliton solutions for specific values of the nonlinearity and dispersion parameters involved in the equation. We also derive other distinct exact solutions for general values of these parameters. We apply the simplified Hirota's method to study the specific of the parameters, which gives multiple soliton solutions. We also use the tanh/coth method and the tan/cot method to obtain other set of solutions with distinct physical structures. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Using Hirota technique, a Bäcklund transformation in bilinear form is obtained for the KdV6 equation. Furthermore, we present a modified Bäcklund transformation by a dependent variable transformation, it is shown that a new representation of N-soliton solution and some novel solutions to the KdV6 equation are derived by performing an appropriate limiting procedure on the known soliton solutions.  相似文献   

12.
In this paper, using three distinct computational methods we obtain some new exact solutions for the generalized modified Degasperis-Procesi equation (mDP equation) ut-uxxt+(b+1)u2ux=buxuxx+uuxxx. We show the graph of some of the new solutions obtained here with the aim to illustrate their physical relevance. Mathematica is used. Finally some conclusions are given.  相似文献   

13.
An exact travelling wave kink soliton to a combination KdV and mKdV equations is given by using an effective homogeneous balance method, and a two‐dimensional generalization is also discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, the completely integrable sixth-order nonlinear Ramani equation and a coupled Ramani equation are studied. Multiple soliton solutions and multiple singular soliton solutions are formally derived for these two equations. The Hirota’s bilinear method is used to determine the two distinct structures of solutions. The resonance relations for the three cases are investigated.  相似文献   

15.
We make use of the homogeneous balance method and symbolic computation to construct new exact traveling wave solutions for the Benjamin-Bona-Mahoney (BBM) equation. Many new exact traveling wave solutions are successfully obtained, which contain rational and periodic-like solutions. This method is straightforward and concise, and it can also be applied to other nonlinear evolution equations.  相似文献   

16.
In this paper, we extend the Jacobi elliptic function rational expansion method by using a new generalized ansätz. With the help of symbolic computation, we construct more new explicit exact solutions of nonlinear evolution equations (NLEEs). We apply this method to a generalized Hirota–Satsuma coupled KdV equations and gain more general solutions. The general solutions not only contain the solutions by the existing Jacobi elliptic function expansion methods but also contain many new solutions. When the modulus of the Jacobi elliptic functions m → 1 or 0, the corresponding solitary wave solutions and triangular functional (singly periodic) solutions are also obtained.  相似文献   

17.
18.
In this paper, differential transform method (DTM), which is one of the approximate methods is implemented for solving the nonlinear Hirota-Satsuma coupled KdV partial differential equation. A variety of initial value system is considered, and the convergence of the method as applied to the Hirota-Satsuma coupled KdV equation is illustrated numerically. The obtained results are presented and only few terms of the expansion are required to obtain the approximate solution which is found to be accurate and efficient. Numerical examples are illustrated the pertinent features of the proposed algorithm.  相似文献   

19.
In this work, the K(l,p) equation is investigated. The sine-cosine method, the tanh method and the extended tanh method are efficiently used for analytic study of this equation. New solitary patterns solutions and compactons solutions are formally derived. The proposed schemes are reliable and manageable.  相似文献   

20.
In this short letter, new exact solutions including kink solutions, soliton-like solutions and periodic form solutions for a combined version of the potential KdV equation and the Schwarzian KdV equation are obtained using the generalized Riccati equation mapping method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号