首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Silane coupling agent is used extensively to improve reinforcing efficiency of silica. Recently, many types of silane coupling agents have been developed and their roles on reinforcing improvement have been studied in many types of rubbers. In the present study, roles of the two widely used silane coupling agents, i.e., bis-(3-triethoxysilylpropyl) tetrasulfane (Si-69) and 3-thiocyanatopropyl triethoxy silane (Si-264) were studied in silica-filled polychloroprene (CR). The results reveal that the presence of Si-69 and Si-264 improves significantly the processability of the rubber compounds. The improvement is more pronounced for Si-264 due to its lower molecular weight and, thus, viscosity. Surprisingly, the results show that Si-69 and Si-264 affect cure characteristics differently, i.e., Si-69 somewhat retards cure while Si-264 accelerates cure. However, both Si-69 and Si-264 result in an increased crosslink density of the vulcanizates. The presence of silane coupling agent also enhances the mechanical properties of the vulcanizates due to the combined effects of better filler dispersion, better rubber-filler interaction and increased crosslink density. A thorough look at the results also reveals that the property enhancement is obvious only at low silane loading (approximately 1.5 phr). Further increase of silane loading generally has little influence on properties of the vulcanizates. In the case of Si-264, excessive use of silane could impair certain properties such as modulus and hardness due to the plasticizing effect. Compared with Si-264, Si-69 imparts the rubber vulcanizates with poorer aging resistance. Explanation goes to the sulfur contribution effect of Si-69.  相似文献   

2.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

3.
《European Polymer Journal》2013,49(10):3199-3209
An in-rubber study of the interaction of silica with proteins present in natural rubber show that the latter compete with the silane coupling agent during the silanisation reaction; the presence of proteins makes the silane less efficient for improving dispersion and filler–polymer coupling, and thus influences the final properties of the rubber negatively. Furthermore, the protein content influences the rheological properties as well as filler–filler and filler–polymer interactions. Stress strain properties also vary with protein content, as do dynamic properties. With high amounts of proteins present in natural rubber, the interactions between proteins and silica are able to disrupt the silica–silica network and improve silica dispersion. High amounts of proteins reduce the thermal sensitivity of the filler–polymer network formation. The effect of proteins is most pronounced when no silane is used, but they are not able to replace a coupling agent.  相似文献   

4.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

6.
Reused tyres powder was used as reinforcement in HDPE-reused tyre composites. In order to improve the compatibility between both components, several pre-treatments performed over the rubber tyres were applied: sulphuric acid etching, use of a silane coupling agent and chlorination with trichloroisocyanuric acid (TCI). Mechanical properties of the resulting materials (e.g. tensile strength, Young’s Modulus, toughness and elongation at break) were studied and compared. Chemical modifications on the surface of reused tyres were monitored by FTIR and physical modifications and behaviour to fracture were followed by means of SEM. The influence of rubber pre-treatment was assessed by comparing the results of treated and untreated composites with those for neat HDPE. Reused tyre rubber, added to the HDPE in small quantities, acts as a filler, improving the stiffness and providing a more brittle behaviour. Pre-treatment with TCI gave poor results in terms of mechanical properties obtaining lower values than neat HDPE in some cases and always worst properties than sulphuric or silane coupling agent. Treatments with H2SO4 and silane coupling agent improve the ability of rubber to interact with the HDPE, increasing the material’s stiffness and its tensile strength. Sulphuric acid modificates chemical and physically the particles’ surface improving mainly mechanical adhesion, whereas silane acts as a compatibilizer developing chemical matrix-reinforcement interactions.  相似文献   

7.
A study of eight silane coupling agents showed very different effect of these compounds on the mechanical properties of PP/CaCO3composites. The application of aminofunctional silane coupling agents resulted in the reactive coupling of the two inactive components leading to increased strength and decreased deformability. A detailed study of the interaction between CaCO3and the various coupling agents was carried out in order to find an explanation for the strong coupling effect. The amount of coupling agent creating a monolayer coverage was determined by a dissolution method for each coupling agent. The obtained values changed between 0.3 and 1.0 wt% calculated for the CaCO3. An attempt was made to determine the orientation of the adsorbed molecules to the filler surface. Most of the coupling agents are oriented perpendicularly to the surface with the exception of a methacryl functional silane compound. Possible interactions between hydrolyzed or condensed silane coupling agents and the filler were studied by Fourier transform infrared spectroscopy using transmitting (FTIR-TS) and diffuse reflectance (DRIFT) modes, as well as gel permeation chromatography (GPC). The results showed that bulky organofunctional groups form a caged, polycyclic, low-molecular-weight structure on the surface, while silanes with smaller groups tend to condense into open, ladder type, high-molecular-weight polysiloxane chains. Polymer/filler adhesion, however, depends primarily on the chemical character of the organofunctional group. Aminofunctional silane coupling agents adhere well to the filler surface and react also with the polymer. In the case of similar functionality the size of the organofunctional group determines the strength of the adhesion.  相似文献   

8.
以γ-巯丙基三乙氧基硅烷与己酰氯为单体,在N2保护与低温下合成偶联剂3-己酰基硫代-1-丙基三乙氧基硅烷(HXT),将HXT与双-(3-乙氧基硅基丙基)二硫化物(TESPD)分别添加于溶液聚合丁苯橡胶(SSBR)/SiO2混炼胶复合体系中.采用流变学方法表征复合体系的动态粘弹行为,发现HXT可改善填料和基体的相互作用,有效阻止SiO2粒子在加工过程中的团聚.与TESPD相比较,含HXT体系具有较高“Payne效应”临界应变值.  相似文献   

9.
Silica is used as a reinforcing filler in the rubber product such as a tire. When silica contents increased in the composite, deterioration of the processability and silica dispersion in silica-rubber composites cannot be overcome only by adding a silane coupling agent. Therefore, silica wet-masterbatch (WMB) technology is considered for manufacturing highly silica filled composites. Herein, we investigated silica dispersion, cure behavior, mechanical properties, abrasion characteristics, and viscoelastic properties of 3 types of WMB blend composites. Up to 82% improvement in silica dispersion was determined by the Payne effect and confirmed by atomic-force microscopy. The tensile strength and elongation at break increased and tan δ at 60 °C decreased by improving silica dispersion. The silica WMB is suitable for manufacturing highly silica filled composites.  相似文献   

10.
A styrene-butadiene copolymer is filled with mixtures of pyrogenic silica combined with a silane coupling agent and fibers of organophilic sepiolite. The mechanical properties of the composites reveal that a mixture of double fillers impart to the elastomeric matrix a higher degree of reinforcement than that which would result from a simple addition of the two types of fillers. The swelling ratio of the composite containing the two types of fillers was found to highly decrease with regard to the pure polymer reflecting strong interactions with the matrix. The changes in the state of dispersion by adding the second filler were evaluated by transmission electron microscopy.  相似文献   

11.
Common nano clay fillers have layered structure. Some nano clays like Attapulgite (AT), Sepiolite have rod like fibrous structure. Compared to layered structured clay fibrous clay AT can undergo better dispersion in polymer matrix leading to better improvement in composite properties. Chemical modifications of AT are done through amine treatment as well as by amine+silane treatment to get chemically modified fillers AAT and SAT respectively. In the present investigation, nano composites are prepared using natural rubber (NR) filled with AT, AAT and SAT. Three different loadings of each filler are used namely 2.5, 5, and 10 phr (parts per hundred of rubber). Mechanical properties like tensile strength, elongation at break increase with the increase in filler loading up to 5 phr there after these properties marginally fall when loading is increased to 10 phr due to problem of filler dispersion at higher loading. However, modulus at 300% elongation and tear strength increases with the increase in filler loading up to 10 phr. Very similar trend can also be observed for composites with chemically modified fillers, AAT and SAT. But the degree of reinforcement is higher in the case of AAT and SAT compared to that of unmodified filler AT for the same filler loading. This difference is mainly due to better polymer-filler interaction and filler dispersion in the case of chemically modified clays AAT and SAT compared to unmodified AT. Tear strength of composites increases remarkably with the addition of AT and which is further enhanced when chemically modified clays AAT and SAT are added. Dynamic-mechanical analyses of different clay composites give idea about the difference in the degree of polymer–filler interaction due to chemical treatment of filler.  相似文献   

12.
Due to the presence of reactive benzylic bromide, Exxpro has much better interaction with silica in comparison with polybutadiene as demonstrated by the high bound rubber level. The better silica/Exxpro interaction is further substantiated by the low degree of filler network formation in comparison to that observed for silica filled polybutadiene as demonstrated by the much smaller deviation of low strain shear modulus from the Guth-Gold relationship for the silica filled Exxpro. Silane treatement of silica reduces filler network formation in polybutadiene but has only slight effect on silica filled Exxpro indicating that even without silane treatment silica already disperse well in Exxpro due to high degree of filler/polymer interaction. This result in silica filled Exxpro compound exhibiting better processability (lower shear viscosity) as well as dynamic performances for tire applications (higher tan δ at −20 and 0°C, lower tan δ at 60°C). We speculate that nucleophilic substitution reaction takes place between benzylic bromide and surface hydroxide group of silica.  相似文献   

13.
研究了反式-1,4-丁二烯-异戊二烯共聚橡胶(TBIR)应用于航空轮胎胎侧胶[天然橡胶(NR)/顺丁橡胶(BR)/TBIR]的耐热氧老化性能. 结果表明, 与NR/BR硫化胶相比, 10~20份质量的TBIR取代BR后, NR/BR/TBIR硫化胶的交联密度明显提高, 压缩温升降低2.2~3.4 ℃, 耐屈挠疲劳性能提高约100%, 填料分散性改善, 填料团聚体体尺寸减小, 拉伸性能基本不变. 随热氧老化时间延长, 硫化胶的交联密度先增加后降低, 并用TBIR的硫化胶交联密度在老化48 h后趋于平缓. 与NR/BR相比, 老化后的NR/BR/TBIR硫化胶生热最低, 耐屈挠疲劳性最高.  相似文献   

14.
Studies of the relationship between interfacial structure and mechanical properties in multicomponent materials are reviewed in this article. The following categories are considered for role of the interface in multicomponent systems: Interpenetrating polymer network(IPN), catalytic effect of silane coupling agent, morphological differences of filler surface, particle-particle interaction and particle size of the filler. The interfacial role in terms of the reinforcement mechanism of the composite and the behavior in the melt state is also discussed in the multicomponent system.  相似文献   

15.
Application of polarization transfer techniques such as DEPT and INEPT in (29)Si NMR investigation of bridged silane polymerization requires knowledge of indirect (29)Si-(1)H scalar coupling constants in the silane system. However, the fully coupled (29)Si NMR spectra of these molecules, specifically those containing ethylene bridging groups, are too complicated to measure the coupling constants directly by visual inspection. This is because unlike hydrocarbon systems where one-bond proton-carbon coupling constants exceed other coupling constants by an order of magnitude, in silanes the closest proton-silicon pairs are separated by two bonds and all coupling coefficients (both homonuclear and heteronuclear) are of similar magnitude. In these systems, theoretical tools are required to interpret the spectra of even simple molecules. Here, we determine density functional theory estimates of (29)Si-(1)H scalar coupling constants and use these along with homonuclear coupling constant estimates to resolve the nontrivial nature of these spectra. We also report a Karplus equation consistent with the dihedral angle dependence of the three-bond homo- and heteronuclear coupling in the ethylene bridge. By thermal averaging of DFT coupling constants, a good initial guess of the coupled (29)Si spectral pattern is made, which is easily refined by curve fitting to determine estimates of all coupling constants in the system.  相似文献   

16.
Commercially, the alteration of a rubber formulation is usually made in such a way as to keep the hardness of the rubber product constant. This is because a specific hardness of the rubber product sets the limit to its practical applications. Therefore, in this paper, natural rubber (NR) vulcanizates containing various fillers were prepared to have the same hardness level, and their mechanical properties were compared and related to the degree of filler dispersion. The results show that higher amounts of carbon black (CB) and silica are needed for CB- and silica-filled natural rubber vulcanizates to achieve the same hardness value as a NR vulcanizate containing 6 phr of montmorillonite clay. At equal loading of fillers, clay-filled vulcanizate exhibits higher modulus, hardness, tensile strength and compression set, but lower heat build-up resistance and crack growth resistance than those of the vulcanizates containing conventional fillers. For the vulcanizate having the same hardness value, CB-filled vulcanizate gives the better overall mechanical properties followed by the clay-filled and silica-filled vulcanizates, respectively. The explanation is given as the better dispersion of carbon black, as can be seen in the SEM micrograph.  相似文献   

17.
Basic features of carbon black-aggregation of particles into structure, particle size and morphology, and surface activity-are reviewed. Carbon black reinforcement of vulcanizates is first examined in the example of tearing, and the influence of hysteresis is considered. The dynamic properties of vulcanizates containing two major types of reinforcing carbon black are compared.

While particle size gives the best correlation with tensile strength of vulcanizates, surface activity is shown to be the key to reinforcement. The role of these properties of carbon black in dissipating rupture energy is discussed.

The relation between work to tensile break and hysteresis to break in gum rubbers can be applied to black-reinforced vulcanizates by use of a strain amplification factor. The complication introduced by stress-softening is explained in terms of localized stress relaxation. Abrasion reinforcement can also be explained in terms of hysteresis.

The Flory-Rehner relationship of modulus of elasticity of swollen vulcanizates to physically-effective cross-linking applies to unswollen vulcanizates only after prestressing. Black-reinforced vulcanizates involve application of the strain amplification factor.

The concept of mobile linkages to rubber chains at the surface of black particles is related to the influence of strain magnification and strain rate magnification in the reinforcing mechanism. These linkages result in formation of “shell” rubber adjacent to carbon black particles. The slippage of rubber chains relative to carbon black aggregates allows stress-sharing by highly-stressed chains. Bound rubber results from reaction of elastomer free radicals generated during mastication with carbon black.

There is a relation between bound rubber and reinforcement which is fully developed only after vulcanization. Formation of bound rubber results from the surface activity of carbon black rather than its structure. Its contribution to reinforcement of the vulcanizate may be as important as cross-linking.  相似文献   

18.
Coupling agent (CA) can not only help filler achieve better dispersion in polymer matrix, but also improve the roughness of the composite with good rigidity at the same time. In this paper, the interaction of silane coupling agents with inorganic fillers (in our case are Mg(OH)2 and CaCO3) were studied by pyrolysis gas chromatography (PGC), as well as Fourier transform infrared spectroscopy. By two-step pyrolysis (first at 250 °C, then at 600 °C), physisorbed and chemisorbed silane on fillers can be distinguished. The bonded silane cannot be flash vaporized at 250 °C, it results in new peaks different from that of silane in pyrograms at 600 °C. The chemisorbed amount of silane increases with time and temperature and finally reaches a plateau. The result showed that PGC was an effective analytical tool to prove the existence of interaction between inorganic filler and CA.  相似文献   

19.
The rheological properties of styrene–butadiene rubber (SBR) loaded with dual phase filler were measured using Monsanto Processability Tester (MPT) at three different temperatures (100°C, 110°C and 130°C) and four different shear rates (61.3, 306.3, 613, and 1004.5 s−1). The effect of electron beam modification of dual phase filler in absence and presence of trimethylol propane triacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) on melt flow properties of SBR was also studied. The viscosity of all the systems decreases with shear rate indicating their pseudoplastic or shear thinning nature. The higher shear viscosity for the SBR loaded with the electron beam modified filler is explained in terms of variation in structure of the filler upon electron beam irradiation. Die swell of the modified filler loaded SBR is slightly higher than that of the unmodified filler loaded rubber, which is explained by calculating normal stress difference for the systems. Activation energy of the modified filler loaded SBR systems is also slightly higher than that of the control filler loaded SBR system.  相似文献   

20.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号