首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
A novel design of a biodegradable carrier for drug delivery was established by constructing a supramolecular assembly of drugs and polymer backbones without any covalent bonds. A biodegradable polyrotaxane was synthesized in which α-cyclodextrins (α-CDs) as drug carriers were threaded onto poly(ethylene glycol) chains which then were capped at each chain end by L -phenylalanine via peptide linkages. The release of α-CDs was observed only when the terminal peptide linkages were degraded.  相似文献   

2.
A functional polyrotaxane of a PEI-b-PEG-b-PEI copolymer is synthesized in aqueous solution in a one-pot sequence. To obtain a polyrotaxane with PEG-block-selective inclusion complexes, the solution pH of the polypseudorotaxane is lowered to 4.4 in the presence of 9-anthraldehyde (AN), which triggers the expulsion of the alpha-cyclodextrins (alpha-CDs) from the flank PEI chains. Synthetic strategy of a block-selective polyrotaxane between a PEI-b-PEG-b-PEI copolymer and alpha-cyclodextrins.  相似文献   

3.
Summary: We developed a new method for synthesizing an organic-soluble permethylated cyclodextrin-based insulated molecular wire (IMW); this method involves the polymerization of a symmetrical linked inclusion complex as a monomer. This monomer was synthesized by dimerization of linked inclusion complexes at the terminal alkynyl groups by Glaser coupling. The polyrotaxane thus obtained is highly soluble in a variety of organic solvents and has a high covering ratio, regioregularity, and photoluminescence efficiency.  相似文献   

4.
A polyrotaxane consisting of many β-cyclodextrins (β-CDs) and a triblock copolymer of poly(ethylene glycol) (PEG) and poly(propylene glycol) (PPG) capped with bulky end-groups was synthesized as a model of stimuli-responsive supramolecules for nanoscale devices. The polyrotaxane was reversibly soluble-insoluble in water in response to temperature. This was achieved through the assembled and dispersed states of β-CDs along the block copolymer. It is considered that intermolecular hydrogen bondings of β-CDs, as well as the PEG segment length of the copoloymer, are predominant factors for regulating such thermally switchable behavior of the polyrotaxane.  相似文献   

5.
Various polyrotaxane modification reactions, such as methylation, hydroxy propylation, tritylation, acetylation, trimethylsilylation, phenylcarbamation, dansylation, and nitration, were examined to obtain polyrotaxane derivatives, in which various functional groups were attached to cyclodextrin moieties. Although the nitrate could not be obtained because of significant degradation of the polyrotaxane under the conditions examined, other derivatives were successfully prepared under moderate conditions. The introduction of these functional groups and their degree of substitution were assessed with Fourier transform infrared and NMR spectroscopy. The polyrotaxane derivatives thus obtained were soluble in various organic solvents other than the conventional solvents (dimethyl sulfoxide and aqueous NaOH) used for the unmodified polyrotaxane. That is, the solubility of the polyrotaxane was drastically changed by the examined modification reactions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6312–6323, 2006  相似文献   

6.
The polyrotaxane formation approach was evaluated for synthesis of continuous beds for capillary electrochromatography. This approach has the advantage of generating diverse electroosmotic and chromatographic properties without chemical reactions. The polyrotaxane derivatized continuous beds were formed adding the macrocyclic compounds to the solution of neutral acrylic monomers and crosslinker prior to the initiation of the polymerisation. Cationic and anionic derivatives of beta-cyclodextrin were used as macrocyclic compounds. Investigation of the electroosmotic properties indicated a template directed and enthalpy controlled self-assembly of the polyrotaxanes during the polymerisation of the continuous beds. This process was monomer-composition dependent and favored by the hydrophobicity of the polymeric skeleton. The morphology of the continuous beds was evaluated using high-resolution optical microscopy with CCD camera and atomic force microscopy. Reversed-phase capillary chromatography driven by electroosmosis, originating from the polyrotaxane structure, was performed using several test mixtures. Not primarily designed for the chiral chromatography the polyrotaxane derivatized continuous beds demonstrated enantioselective separation of D,L-metoprolol. The stability of the polyrotaxane derivatized continuous beds was tested. The beds demonstrated reproducible electroosmotic properties in the range from pH 4 to pH 9 (RSD=0.69%).  相似文献   

7.
A sliding graft copolymer (SGC) with poly(ethylene glycol) (PEG) side chains was prepared by ester formation between terminal carboxyl groups of oxidized PEG methyl ether with molecular weight of 2000 (mPEG2000‐COOH) and hydroxyl groups of a polyrotaxane consisting of PEG and cyclodextrins (CDs). Formation of the SGC structure was confirmed by 1H NMR, attenuated total reflectance Fourier‐transformed infrared, and gel permeation chromatography. The SGC was soluble in good solvents of PEG and insoluble in poor solvents of PEG. Estimation of the number of grafted mPEG chains suggested a “rope‐curtain” like structure, in which an mPEG chain is connected to each CD ring. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
We present here the synthesis of a novel fluorescent actinide polyrotaxane compound URCP1 through the utilization of an end-cutting pseudorotaxane precursor with only the cucurbit[6]uril (CB[6]) macrocyclic components acting as linking struts. The non-coordinating guest motif in the obtained polyrotaxane, with increased freedom and structural flexibility, can display intriguing temperature-triggered conformational variations inside the cavity of CB[6], which was clearly evidenced by crystallographic snapshots at different temperatures. Notably, this observation of temperature-triggered structural dynamics in URCP1 represents the first report of actinide polyrotaxane with such feature in solid-state. Moreover, URCP1 has a high photoluminescence quantum yield (PLQY) of 49.8 %, comparable to other luminescent uranyl compounds, and can work as a fluorescent probe to selectively detect Fe3+ over other eight competing cations in aqueous solution, with the limit of detection being as low as 4.4×10−3 ppm.  相似文献   

9.
Dimethylacetamide (DMAc) containing 8–9% (w/w) of lithium chloride (LiCl) or lithium bromide (LiBr) was found to be a good solvent for a polyrotaxane consisting of poly (ethylene glycol) (PEG) and α‐cyclodextrin (CD). In the new DMAc/LiCl solvent system, various modification reactions such as acetylation, direct dansylation, and reaction with acid chloride could be performed, which was unattainable in the previously reported solvents, i.e., dimethylsulfoxide (DMSO) and aqueous sodium hydroxide solution. Acetylation with acetic anhydride and direct dansylation of the polyrotaxane were investigated in detail in comparison with reactions in DMSO. The dissolution of the polyrotaxane in DMAc/LiCl suggested that the solubility and insolubility of the polyrotaxane is strongly in relation to the inter‐ and intramolecular hydrogen bonding of the polyrotaxane. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 532–538, 2006  相似文献   

10.
Polyrotaxane is a supramolecular assembly consisting of multiple cyclic molecules threaded by a linear polymer. One of the unique properties of polyrotaxane is molecular mobility, cyclic molecules moving along the linear polymer. Molecular mobility of polyrotaxane surfaces affects cell spreading, differentiation, and other cell-related aspects through changing subcellular localization of yes-associated proteins (YAPs). Subcellular YAP localization is also related to cell senescence derived from oxidative stress, which is known to cause cancer, diabetes, and heart disease. Herein, the effects of polyrotaxane surface molecular mobility on subcellular YAP localization and cell senescence following H2O2-induced oxidative stress are evaluated in human mesenchymal stem cells (HMSCs) cultured on polyrotaxane surfaces with different molecular mobilities. Oxidative stress promotes cytoplasmic YAP localization in HMSCs on high-mobility polyrotaxane surfaces; however, low-mobility polyrotaxane surfaces more effectively maintain nuclear YAP localization, exhibiting lower senescence-associated β-galactosidase activity and senescence-related gene expression and DNA damage than that seen with the high-mobility surfaces. These results suggest that the molecular mobility of polyrotaxane surfaces regulates subcellular YAP localization, thereby protecting HMSCs from oxidative stress-induced cell senescence. Applying the molecular mobility of polyrotaxane surfaces to implantable scaffolds can provide insights into the prevention and treatment of diseases caused by oxidative stress.  相似文献   

11.
The hierarchical assembly of well‐organized submoieties could lead to more complicated superstructures with intriguing properties. We describe herein an unprecedented polyrotaxane polythreading framework containing a two‐fold nested super‐polyrotaxane substructure, which was synthesized through a uranyl‐directed hierarchical polythreading assembly of one‐dimensional polyrotaxane chains and two‐dimensional polyrotaxane networks. This special assembly mode actually affords a new way of supramolecular chemistry instead of covalently linked bulky stoppers to construct stable interlocked rotaxane moieties. An investigation of the synthesis condition shows that sulfate can assume a vital role in mediating the formation of different uranyl species, especially the unique trinuclear uranyl moiety [(UO2)3O(OH)2]2+, involving a notable bent [O=U=O] bond with a bond angle of 172.0(9)°. Detailed analysis of the coordination features, the thermal stability as well as a fluorescence, and electrochemical characterization demonstrate that the uniqueness of this super‐polyrotaxane structure is mainly closely related to the trinuclear uranyl moiety, which is confirmed by quantum chemical calculations.  相似文献   

12.
合成了具有可逆酰腙键的2,4-二硝基苯甲醛封端的哑铃型聚乙二醇衍生物. 在60 ℃时将水溶液的pH值调节至酸性, 哑铃型聚合物上的酰腙键发生可逆的“断开”和“生成”. 在这个可逆过程中, 溶液中的α-环糊精逐步与聚乙二醇内含复合. 由于环糊精具有较强疏水作用的内部空腔, 可以与聚乙二醇形成稳定的内含结晶复合物, 在这种超分子作用力下, 哑铃型聚乙二醇衍生物的分子链上会动态地穿入更多的α-环糊精, 最终形成聚轮烷. 综合液体核磁共振、粉末X射线衍射、固体碳-13交叉极化/魔角自旋核磁共振及差示扫描量热分析结果证明, 这种利用可逆共价键pH响应性制备聚轮烷的方法是可行的. 与传统的聚轮烷制备方法不同, 这种利用动态的可逆共价键制备聚轮烷的方法并不需要预先合成准(聚)轮烷.  相似文献   

13.
基于环糊精的(准)聚轮烷研究进展   总被引:3,自引:0,他引:3  
环糊精聚轮烷作为超分子化学的重要成员由于可潜在应用于分子机器、组织工程支架、人体生物传感器及药物控制释放载体等智能生物材料已成为国际化学及高分子科学的一个热点.本文介绍了基于环糊精的(准)聚轮烷最新研究进展,包括(准)聚轮烷合成新方法,聚轮烷的多种类型(如嵌段型、金属软连接型、星形、pH敏感型、侧链型、聚轮烷聚集体等),以及(准)聚轮烷形成机理研究,并进一步探讨了该领域的研究前景及有待解决的问题.  相似文献   

14.
The electrochromic properties of a polythiophene polyrotaxane film consisting of a polythiophene backbone wrapped by the tetra-cationic cyclophane, cyclobis(paraquat-p-phenylene), were characterized. A naked reference polythiophene film, i.e., polythiophene without tetra-cationic cyclophane, was also characterized. The surface morphology and thickness of the film (L) were observed by atomic force microscopy. The surface of the naked reference polythiophene film has micrometer-scale polythiophene aggregates, which causes the darker color of the film and smaller color contrast in the electrochromic process. The polythiophene polyrotaxane gives a more homogeneous and brighter colored film owing to the suppression of molecular interactions between the polythiophene chains by the tetra-cationic cyclophanes. Potential-step chronoamperometric measurement provided the area density of the oxidizable sites (Γ) and the apparent diffusion coefficient of the charge transport in the film. From linear relationship between L and Γ, the concentrations of the oxidizable sites in the polythiophene polyrotaxane and naked reference polythiophene films were calculated to be 1.3 and 2.4 mmol cm(-3), respectively. Interestingly, the polythiophene polyrotaxane film afforded a significantly larger apparent diffusion coefficient than the naked reference polythiophene film. This result suggests that the rate-determining step of the charge transport is not the electron hopping between the polythiophene chains but the transport of charge-compensating counterions from the solvent into the polythiophene. We believe that the counteranions of the tetra-cationic cyclophane provide a pathway allowing the charge-compensating counteranions to migrate from the solvent to polythiophene. The polythiophene polyrotaxane film showed faster color change than the naked reference polythiophene film in the electrochromic reaction. These results indicate that our polythiophene polyrotaxane is a better electrochromic material than the naked reference polythiophene.  相似文献   

15.
Jang K  Miura K  Koyama Y  Takata T 《Organic letters》2012,14(12):3088-3091
A catalyst- and solvent-free synthesis of cyclodextrin-based polyrotaxanes exploiting a stable nitrile N-oxide as an end-capping agent was achieved. The C-C bond-forming end-capping reaction of an allyl-terminated pseudopolyrotaxane with the nitrile N-oxide proceeded smoothly by solid-state grinding in a mortar to afford a polyrotaxane.  相似文献   

16.
A biocleavable polyrotaxane, having a necklace-like structure consisting of many cationic alpha-cyclodextrins (alpha-CDs) and a disulfide-introduced poly(ethylene glycol) (PEG), was synthesized and examined as a nonviral gene carrier. The polyrotaxane formed a stable polyplex having positively charged surface even at low charge ratio. This is likely to be due to structural factors of the polyrotaxane, such as the mobile motion of alpha-CDs in the necklace-like structure. Rapid endosomal escape was observed 90 min after transfection. The positively charged surface and the good buffering capacity are advantageous to show the proton sponge effect. The pDNA decondensation occurred through disulfide cleavage of the polyrotaxane and subsequent supramolecular dissociation of the noncovalent linkages between alpha-CDs and PEG. Transfection of the DMAE-SS-PRX polyplex is independent of the amount of free polycation. Those properties played a key role for delivery of pDNA clusters to the nucleus. Therefore, the polyplex nature and the supramolecular dissociation of the polyrotaxane contributed to the enhanced gene delivery.  相似文献   

17.
The dissolution behavior of polyrotaxanes, consisting of α‐cyclodextrin and poly(ethylene glycol), with different molecular weights (2000 and 35,000) was investigated. Halogen‐containing ionic liquids, such as chlorides or bromides, were found to be good solvents for polyrotaxanes, regardless of their cations. Dissolution required a high temperature (above 90 °C), while intensive heating over 105 °C seemed to cause decomposition of the polyrotaxane. The discovery of new solvents for polyrotaxane was applied in the preparation of ionic liquid‐containing slide‐ring gels (SR gels), that is supramolecular networks of polyrotaxane swollen with ionic liquids, using a devised “non‐drying” technique accompanied by solvent exchange. Significant swelling of the SR gels with the ionic liquids was confirmed by dynamic mechanical measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1985–1994, 2006  相似文献   

18.
19.
High molecular mobility of maltose-conjugated alpha-cyclodextrins (alpha-CDs) along a poly(ethylene glycol) (PEG) chain due to the mechanically locked structure of polyrotaxanes enhanced multivalent interactions between maltose and concanavalin A (Con A). When maltose groups are conjugated with alpha-CDs that were threaded onto a PEG capped with benzyloxycarbonyl l-tyrosine (polyrotaxane), Con A-induced hemagglutination was greatly inhibited by polyrotaxanes with a certain threading % of alpha-CDs. Such an inhibitory effect was significantly superior to the other type of conjugates, in which poly(acrylic acid) was used as a backbone for maltose conjugation. The spin-spin relaxation time (T2) of the maltose C(1) proton in the polyrotaxane at a typical alpha-CD threading % was significantly larger than that of any other conjugate, which was well related to the inhibitory effect. Therefore, we concluded that the high mobility of maltose groups along the polyrotaxane structure contributes to enhanced Con A recognition.  相似文献   

20.
We describe the quantitative synthesis of new pyrene labeled cyclodextrin-based polyrotaxane starting from pseudopolyrotaxane of alpha,omega-dimethacrylate poly(ethylene oxide) (PEO) and alpha-cyclodextrins (alpha-CDs). Using a solvent mixture (H2O/dimethyl sulfoxide (DMSO)), an almost quantitative conversion in polyrotaxane can be achieved using the coupling reaction between methacrylic functions and 1-pyrene butyric acid N-hydroxysuccinimide ester. This result is due to the fast blocking reaction of the pseudopolyrotaxane telechelic functions. The polyrotaxanes are characterized by NMR, size exclusion chromatography (SEC), and small-angle neutron scattering (SANS). A rodlike structure of the polyrotaxane is evidenced by SANS, and a persistence length of 70 A is determined. This result corresponds to an almost completely stretched PEO chain of 1000 g.mol(-1) molecular weight. We furthermore studied the opposite case of low packing density polyrotaxanes that were also silylated to suppress interactions between cyclodextrins. We observed a random coil structure only for silylated low packed polyrotaxane. This result demonstrates that both hydrogen bonding and packing density can explain the rodlike structure of cyclodextrin-based polyrotaxane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号