首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article reports the study of the effect of relative grafting densities of two polymer chains on solvent-induced self-assembly of mixed poly(methyl methacrylate) (PMMA)/polystyrene (PS) brushes through a combinatorial approach. Gradient-mixed PMMA/PS brushes were synthesized from a gradient-mixed initiator-terminated monolayer by combining atom transfer radical polymerization (ATRP) and nitroxide mediated radical polymerization (NMRP) in a two-step process. The gradient-mixed initiator-terminated monolayer was fabricated by first formation of a gradient in density of an ATRP initiator through vapor diffusion followed by backfilling of an NMRP-initiator-terminated trichlorosilane. After treatment of a gradient-mixed brush whose PS Mn was slightly lower than that of PMMA with glacial acetic acid, a selective solvent for PMMA, relatively ordered nanodomains were observed in the region where the ratio of PS to PMMA grafting density (number of polymer chains/nm2) was in the range from 0.67 to 2.17 and the overall grafting density was approximately 0.85 polymer chains/nm2. Contact angle hysteresis were high (> or =40 degrees ) in this region and XPS studies confirmed that the PMMA chains were enriched at the outermost layer. The nanodomains are speculated to be of a micellar structure with PS chains forming the core shielded by PMMA chains.  相似文献   

2.
The structure of poly(ethylene oxide) (PEO, M(w) = 526) brushes of various grafting density (sigma) on nonpolar graphite and hydrophobic (oily) surfaces in aqueous solution has been studied using atomistic molecular dynamics simulations. Additionally, the influence of PEO-surface interactions on the brush structure was investigated by systematically reducing the strength of the (dispersion) attraction between PEO and the surfaces. PEO chains were found to adsorb strongly to the graphite surface due primarily to the relative strength of dispersion interactions between PEO and the atomically dense graphite compared to those between water and graphite. For the oily surface, PEO-surface and water-surface dispersion interactions are much weaker, greatly reducing the energetic driving force for PEO adsorption. This reduction is mediated to some extent by a hydrophobic driving force for PEO adsorption on the oily surface. Reduction in the strength of PEO-surface attraction results in reduced adsorption of PEO for both surfaces, with the effect being much greater for the graphite surface where the strong PEO-surface dispersion interactions dominate. At high grafting density (sigma approximately 1/R(g)(2)), the PEO density profiles exhibited classical brush behavior and were largely independent of the strength of the PEO-surface interaction. With decreasing grafting density (sigma < 1/R(g)(2)), coverage of the surface by PEO requires an increasingly large fraction of PEO segments resulting in a strong dependence of the PEO density profile on the nature of the PEO-surface interaction.  相似文献   

3.
报道了一种随机高密度接枝亲水、疏水聚合物侧链的刷形两亲性聚合物.首先,结合可逆加成-断裂链转移(RAFT)聚合和后修饰方法,得到含叠氮侧基的聚甲基丙烯酸缩水甘油酯(PGMA-N3)作为主链;再分别合成端炔基聚苯乙烯(PS)和端炔基聚环氧乙烷(PEO),然后通过铜催化的叠氮-炔环加成反应,将疏水性PS和亲水性PEO同时高效的接到PGMA主链上,制得两亲性杂侧链的聚合物刷.由凝胶渗透色谱(SEC)分析得知,在主链叠氮基团与两侧链总炔基的摩尔投料比为1∶1的条件下,PS和PEO的接枝效率很高,都大于90%.通过调节主链长度和2种侧链的投料比,获得不同组成的聚合物刷.通过等质量的甲苯/水混合体系,考察两亲性聚合物刷的乳化能力,发现主链聚合度为100,PS∶PEO比例为70∶30的聚合物刷表现出最佳的乳化性能.  相似文献   

4.
The adsorption properties of thermosensitive graft-copolymers are investigated with the aim of developing self-assembled multilayers from these copolymers. The copolymers consist of a thermoreversible main chain of poly(N-isopropylacrylamid) and a weak polyelectrolyte, poly(2-vinylpyridine), as grafted side chains. Zeta-potential, single particle light scattering and adsorption isotherms monitor the adsorption of the thermoreversible copolymers to precoated colloidal particles. The results show a smaller surface coverage for a larger density of grafted chains. The surface coverage is discussed in terms of surface charge density in the adsorbed monolayer. Taking into account the monolayer adsorption properties, conditions are developed for the multilayer formation from these copolymers. A low pH provides a sufficient charge density of the grafted chains to achieve a surface charge reversal of the colloids upon adsorption. The charge reversal after each adsorbed layer is monitored by zeta-potential and the increase of the thickness is determined by light scattering. Stable and reproducible multilayers are obtained. The results imply that the conformation of the thermosensitive component in multilayers depends strongly on the grafting density, where the polymer with a higher grafting density adsorbs in a flat conformation while that with a lower grafting density adsorbs with more loops.  相似文献   

5.
孙喆  宋海华 《物理化学学报》2008,24(8):1487-1492
建立了用于模拟双峰聚合物分子刷相结构的自洽场理论. 模拟结果表明, 良溶剂条件能够促使双峰聚合物分子刷裂分为内外两个亚分子层, 其中短链居于内分子层, 而长链伸展到外分子层. 体系溶解性的加强不仅使聚合物的密度分布逐渐趋近强分凝理论的解析结果, 而且加大了分子链的伸展和链段的局部取向程度. 分子链接枝密度的增加能够促使分子刷的层化, 并且在良溶剂区域, 不同接枝密度的分子链密度分布可以回归到同一条主线. 在良溶剂条件下, 长链的聚合度对短链的密度分布影响不大, 但能够导致长链向外分子层扩展.  相似文献   

6.
The graft copolymers (polystyrene-graft-polyoxyethylene) (PSt-graft-PEO) were prepared by the radical dispersion copolymerization of methacryloyl (MA)-terminated PEO macromonomer and styrene. By means of size-exclusion chromatography, liquid chromatography at the critical adsorption point, and light scattering, the molecular weight parameters and the solution properties of PSt-graft-PEO were investigated. The apparent average molecular weight and the molecular weight distribution (MWD) of graft copolymers were found to decrease with increasing molecular weight of PEO-MA macromonomer. This decreased molecular weight was attributed to the chain transfer to PEO unit and increased contribution of the solution polymerization. The broad MWD varied with the ratio of the polymerization in the continuous phase and the polymer particles. The number of PEO grafts per PSt backbone decreased with increasing molecular weight of the PSt-graft-PEO copolymer, which was attributed to the intramolecular association of PEO segments. The intrinsic viscosity or the coil size of graft copolymer molecules varied with temperature as a result of the dehydration of PEO segments. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3087–3097, 1999  相似文献   

7.
Solid surfaces are modified by grafting poly(ethylene oxide), PEO, to influence their interaction with indwelling particles, in particular molecules of bovine serum albumin and human plasma proteins. As a rule, the grafted PEO layers suppress protein adsorption. The suppression is most effective when the PEO layer is in a molecular brush conformation having a reciprocal grafting density (area per grafted PEO chain) less than the dimensions of the protein molecules. Nevertheless, the protein molecules may penetrate the PEO brush to some extent. For a given grafting density, the penetration is facilitated by increasing thickness of the brush. Tenuous brushes of reciprocal grafting densities exceeding the protein molecular dimensions enhance protein adsorption. The results point to a weak attractive interaction between PEO and protein. The protein repellency of a densely PEO-brushed surface is ascribed to a high activation energy for the protein molecules to enter the brush. Varying the temperature between 22 and 38 degrees C does not significantly affect the range of grafting density over which the brush changes from protein-attractive to protein-repellent.  相似文献   

8.
Interaction of bovine serum albumin (BSA) with poly(lactic acid) (PLA) layers mixed with poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers (Pluronic) at air/solution interfaces was studied by the Langmuir balance technique. Wettability of the mixed PLA-Pluronic system was characterized in the form of a transferred one-layer Langmuir-Blodgett film, and considerable hydrophilization was obtained for all of the Pluronics (6400, 6800, 10500, and 12700) applied here. The density of PEO chains in the monolayer and hence the coverage of PLA was controlled by the composition and the compression of the mixed monolayers. Tensiometric investigations revealed that a significant reduction of BSA adsorption/penetration was achieved by applying the Pluronic 6800 and 12700 with long PEO blocks for hydrophilization of PLA. Interaction of BSA with the modified PLA monolayer depended on the density and length of the PEO chains. The surface morphological characteristics of the films determined by atomic force microscopy were in good correlation with the results of BSA interaction. The average roughness of the polymer LB layer was high due to BSA penetration into the PLA film, while smooth surfaces with small roughness were obtained when the PLA layer was modified by Pluronic 6800.  相似文献   

9.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. It is generally accepted that surface modification of the biomaterials with poly(ethylene oxide) (PEO) substantially reduces protein adsorption and cell adhesion. Dacron® (polyethylene terephthalate) fabric, which is one of the biomaterials commonly used in blood-contacting devices, was grafted with PEO. A simple two-step procedure for covalent grafting of PEO onto the surface of Dacron® fabric was used. The surface was first treated with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymer, to introduce a layer of double bonds onto the surface. The Dacron® surface was then exposed to a solution of Pluronic® F108 (PF108), a commercially available PEO-poly(propylene oxide)-PEO (PEO-PPO-PEO) triblock copolymer. The surface with two adsorbed layers of PEO-PB-PEO and PF108 was γ-irradiated in the presence of PF108 in the bulk solution for a total radiation dose of 0.8 Mrad. The bulk concentrations of PEO-PB-PEO and PF108 were varied to maximize the efficiency of PEO grafting. Fibrinogen adsorption on PEO-grafted surfaces was reduced more than 90%, compared with that on control surfaces, irrespective of the bulk concentrations of polymers used for grafting. Platelet adhesion was also reduced substantially by PEO grafting. Only a few round platelets were able to adhere to the PEO-grafted surface, while the control surface was fully covered with aggregates of activated platelets. PEO grafting on polyethylene terephthalate using PEO-PB-PEO and PEO-PPO-PEO block copolymers is a simple approach that can be used for various other biomaterials.  相似文献   

10.
Adsorption of BSA on the amphiphilic PEG graft copolymer-coated particles   总被引:1,自引:0,他引:1  
The amphiphilic copolymers comprising several monomethoxy poly(ethylene glycol) (mPEG) and lauryl side chains were prepared and coated on the polystyrene (PS) particles to study the interactions between these particles and bovine serum albumin (BSA). The surface mPEG density and mPEG chain length were the primary parameters of interest. A significant fraction of the graft copolymer was washed away from the particle surface during five cycles of centrifugation-dispersion treatment, especially for the one with the smallest number of lauryl side chains. At pH 5, the BSA adsorption data did not follow the Langmuir isotherm model for the graft copolymer-modified particles. This was attributed to the presence of a surface mPEG layer that severely retarded the approach of BSA to the particle. The amount of the adsorbed BSA decreased with increasing the surface mPEG density. A mechanistic model was proposed to qualitatively describe the adsorption of BSA on the mPEG-containing particles and the native particles as well.  相似文献   

11.
The dispersion of polymer-covered gold nanoparticles in high molecular weight (MW) polymer matrixes is reported. Complete particle dispersion was achieved for PS125-Au in the polystyrene (PS) matrixes studied (up to and including Mn = 80 000 g/mol). PS19-Au, on the other hand, exhibits complete dispersion in a low MW PS matrix (Mn = 2000 g/mol) but only partial dispersion in higher MW matrixes (up to 80 000 g/mol). Similarly, PEO45-Au is fully dispersed in a low MW poly(ethylene oxide) (PEO) matrix (Mn = 1000 g/mol) but only partially in a higher MW PEO matrix (Mn = 15 000 g/mol). Wetting of the polymer-Au brushes by the polymer matrix is associated with dispersibility. Theory predicts that, for dense polymer brushes, wetting is achieved when the MW of the polymer brush equals (and is greater than) that of the polymer matrix. The observed partial dispersion of the PS19-Au and PEO45-Au nanoparticles in matrixes whose MW is greater than the brush MW is attributable to the existence of a high volume fraction of voids within the brush. These voids arise from the unique geometry of the nanoparticle surface arising from the juxtaposed facets of the gold nanoparticle. PS125-Au brushes are wetted by PS matrixes whose degree of polymerization is larger than 125, probably because of their lower grafting density on the gold core or the high fraction of void volumes caused by the facets on the gold cores. Dispersion thus occurs when the matrix MW is greater than that of the brush.  相似文献   

12.
Trithiocarbonate group was introduced into the polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymers as the junction of the blocks through RAFT polymerization. Mixed PS and PEO brushes with a V-shape were prepared by anchoring the trithiocarbonate group on the planar gold substrate. The morphology of the V-shaped brushes was characterized by atomic force microscopy (AFM) and the surface composition responsive to solvent treatment was detected by X-ray photoelectron spectroscopy (XPS). Different morphologies were observed for the V-shaped PS-b-PEO brushes, depending on the chain structure and solvent treatment. The highly selective solvent for PEO, ethanol, can intensify or induce microphase separation of the V-shaped brushes, leading to vertical microphase separation. When the V-shaped brushes are treated with the co-solvent, THF, miscible morphology, lateral microphase separation, and vertical microphase separation are observed as the PS block length increases. After treatment with the non-selective poor solvent, cyclohexane, the V-shaped PS(106)-b-PEO(113) brush, exhibits a laterally microphase-separated morphology, but the V-shaped PS(52)-b-PEO(113) and PS(253)-b-PEO(113) brushes are vertically microphase-separated.  相似文献   

13.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

14.
李莉 《高分子科学》2014,32(6):778-785
Spherical polyelectrolyte brushes (SPBs) with PS core and poly(acrylic acid) (PAA) brushes were prepared and analyzed by SAXS in this article. A radial electron density profile of SPB was brought up, which fits well with the SAXS result and shows a core-shell structure. The effect of pH on SPB form was represented by SAXS and it proves that the chains of SPB will stretch in response to increased pH owning to the increased electrostatic repulsion. SPBs immobilized with magnetic nanoparticles or bovine serum albumin (BSA) were prepared and analyzed by SAXS as well. SAXS could characterize the changes of electron density inside brushes of SPBs due to the immobilization of magnetic nanoparticles or BSA. This provides significant supports for further application of immobilized metal nanoparticles or proteins.  相似文献   

15.
In this work, bioadhesive behavior of plasma proteins and blood cells from umbilical cord blood (UCB) onto zwitterionic poly(sulfobetaine methacrylate) (polySBMA) polymer brushes was studied. The surface coverage of polySBMA brushes on a hydrophobic polystyrene (PS) well plate with surface grafting weights ranging from 0.02 mg/cm(2) to 0.69 mg/cm(2) can be effectively controlled using the ozone pretreatment and thermal-induced radical graft-polymerization. The chemical composition, grafting structure, surface hydrophilicity, and hydration capability of prepared polySBMA brushes were determined to illustrate the correlations between grafting properties and blood compatibility of zwitterionic-grafted surfaces in contact with human UCB. The protein adsorption of fibrinogen in single-protein solutions and at complex medium of 100% UCB plasma onto different polySBMA brushes with different grafting coverage was measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. The grafting density of the zwitterionic brushes greatly affects the PS surface, thus controlling the adsorption of fibrinogen, the adhesion of platelets, and the preservation of hematopoietic stem and progenitor cells (HSPCs) in UCB. The results showed that PS surfaces grafted with polySBMA brushes possess controllable hydration properties through the binding of water molecules, regulating the bioadhesive and bioinert characteristics of plasma proteins and blood platelets in UCB. Interestingly, it was found that the polySBMA brushes with an optimized grafting weight of approximately 0.1 mg/cm(2) at physiologic temperatures show significant hydrated chain flexibility and balanced hydrophilicity to provide the best preservation capacity for HSPCs stored in 100% UCB solution for 2 weeks. This work suggests that, through controlling grafting structures, the hemocompatible nature of grafted zwitterionic polymer brushes makes them well suited to the molecular design of regulated bioadhesive interfaces for use in the preservation of HSPCs from human UCB.  相似文献   

16.
Lyu  Yu-Feng  Zhang  Zhi-Jie  Liu  Chang  Geng  Zhi  Gao  Long-Cheng  Chen  Quan 《高分子科学》2018,36(1):78-84
The ionic conductivity and the mechanical strength are two key factors for the performance ofpoly(ethylene oxide) (PEO) based polyelectrolytes.However,crystallized PEO suppresses ion conductivity at low temperature and melted PEO has low mechanical strength at high temperature.Here,random binary brush copolymer composed of PEO-and polystyrene (PS)-based side chains is synthesized.PEO crystallinity is suppressed by the introduction of PS brushes.Doping with lithium trifluoromethanesulfonate (LiTf) induces microphase separation.Due to a random arrangement of the brushes,the microphase segregation is incomplete even at high salt loading,which provides both high ionic conductivity and high mechanical strength at room temperature.These results provide opportunities for the design of polymeric electrolytes to be used at room temperature.  相似文献   

17.
Products of the radical dispersion copolymerization of methacryloyl‐terminated poly(ethylene oxide) (PEO) macromonomer and styrene were separated and characterized by size exclusion chromatography (SEC), full adsorption‐desorption (FAD)/SEC coupling and eluent gradient liquid adsorption chromatography (LAC). In dimethylformamide, which is a good solvent for PEO side chains but a poor solvent for polystyrene (PS), amphiphilic PS‐graft‐PEO copolymers formed aggregates, which were very stable at room temperature even upon substantial dilution. The aggregates disappeared at high temperature or in tetrahydrofuran (THF), which is a good solvent for both homopolymers and for PS‐graft‐PEO. FAD/SEC procedure allowed separation of homo‐PS from graft‐copolymer and determination of both its amount and molar mass. Effective molar mass of graft‐copolymer was estimated directly from the SEC calibration curve determined with PS standards. Presence of larger amount of the homo‐PS in the final graft‐copolymer products was also confirmed with LAC measurements. The results indicate that there are at least two or maybe three polymerization loci; namely the continuous phase, the particle surface layer and the particle core. The graft copolymers are produced mainly in the continuous phase while PS or copolymer rich in styrene units is formed mostly in the core of monomer‐swollen particles. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2284–2291, 2000  相似文献   

18.
The synthesis and characterization of spherical sugar-containing polymer brushes consisting of PS cores onto which chains of sugar-containing polymers have been grafted via two different techniques are described. Photopolymerization in aqueous dispersion using the functional monomer MAGlc and crosslinked or non-crosslinked PS particles covered with a thin layer of photo-initiator yielded homogeneous glycopolymer brushes attached to spherical PS cores. As an alternative, ATRP was used to graft poly-(N-acetylglucosamine) arms from crosslinked PS cores. Deprotection of the grafted brushes led to water-soluble particles that act as carriers for catalytically active gold nanoparticles. These glycopolymer chains show a high affinity to adsorb WGA whereas no binding to BSA or PNA could be detected.  相似文献   

19.
In polystyrene‐block‐poly(ethylene oxide) thin films, microphase‐separated brushes on the square platelets can be obtained via fast solvent evaporation by controlling the tethering density (0.08 < σ < 0.11). The tethering density of the brushes is proportional to the thickness of the PEO crystal and increases with increasing initial solution heating temperature (Ti). When Ti < Tm, where Tm is the melting point of PEO, brushes with microphase‐separated structures are observed. The formation of microphase‐separated brushes depends on two factors: the strong incompatibility between PS and noncrystalline PEO chains (attached to the crystalline PEO) and the weak interaction between PS‐PS brushes.

  相似文献   


20.
In this paper, we describe atomic force microscope (AFM) friction experiments on different polymers. The aim was to analyze the influence of the physical architecture of the polymer on the degree and mode of wear and on the wear mode. Experiments were carried out with (1) linear polystyrene (PS) and cycloolefinic copolymers of ethylene and norbornene, which are stabilized by entanglements, (2) mechanically stretched PS, (3) polyisoprene-b-polystyrene diblock copolymers, with varying composition, (4) brush polymers consisting of a poly(methyl methacrylate) (PMMA) backbone and PS side chains, (5) PMMA and PS brushes grafted from a silicon wafer, (6) plasma-polymerized PS, and (7) chemically cross-linked polycarbonate. For linear polymers, wear depends critically on the orientation of the chains with respect to the scan direction. With increasing cross-link density, wear was reduced and ripple formation was suppressed. The cross-linking density was the dominating material parameter characterizing wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号