首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we aimed to analyze the effects of low‐level laser therapy (LLLT; 660 nm) on levels of protein expression of inflammatory mediators after cutting Achilles tendon of rats. Thirty Wistar male rats underwent partial incisions of the left Achilles tendon, and were divided into three groups of 10 animals according to the time of euthanasia after injury: 6, 24 and 72 h. Each group was then divided into control group and LLLT group (treated with 100 mW, 3.57 W cm?2, 0.028 cm2, 214 J cm?2, 6 J, 60 s, single point). In LLLT group, animals were treated once time per day until the time of euthanasia established for each group. The group treated with LLLT showed a significant reduction of IL‐1β compared with control groups at three time points (6 h: P = 0.0401; 24 h: P = 0.0015; 72 h: P = 0.0463). The analysis of IL‐6 showed significant reduction only in the LLLT group at 72 h compared with control group (P = 0.0179), whereas IL‐10 showed a significant increase in the treated group compared with control group at three experimental times (6 h: P = 0.0007; 24 h: P = 0.0256; 72 h: P < 0.0001). We conclude that LLLT is an important modulator of inflammatory cytokines release after injury in Achilles tendon.  相似文献   

2.
Acute lung injury (ALI) is a kind of lung disease with acute dyspnea, pulmonary inflammation, respiratory distress, and non-cardiogenic pulmonary edema, accompanied by the mid- and end-stage characteristics of COVID-19, clinically. It is imperative to find non-toxic natural substances on preventing ALI and its complications. The animal experiments demonstrated that Lentinus edodes polysaccharides (PLE) had a potential role in alleviating ALI by inhibiting oxidative stress and inflammation, which was manifested by reducing the levels of serum lung injury indicators (C3, hs-CRP, and GGT), reducing the levels of inflammatory factors (TNF-α, IL-1β, and IL-6), and increasing the activities of antioxidant enzymes (SOD and CAT) in the lung. Furthermore, PLE had the typical characteristics of pyran-type linked by β-type glycosidic linkages. The conclusions indicated that PLE could be used as functional foods and natural drugs in preventing ALI.  相似文献   

3.
This study evaluated the effects of LLLT on the expression of inflammatory cytokines related to the development of oral mucositis by gingival fibroblasts. Primary gingival fibroblasts were seeded on 24‐well plates (105 cells/well) for 24 h. Fresh serum‐free culture medium (DMEM) was then added, and cells were placed in contact with LPS (Escherichia coli, 1 μg mL?1), followed by LLLT irradiation (LaserTABLE—InGaAsP diode prototype—780 nm, 25 mW) delivering 0, 0.5, 1.5 or 3 J cm?². Cells without contact with LPS were also irradiated with the same energy densities. Gene expression of TNF‐α, IL‐1β, IL‐6 and IL‐8 was evaluated by Real‐Time PCR, and protein synthesis of these cytokines was determined by enzyme‐linked immunosorbent (ELISA) assay. Data were statistically analyzed by the Kruskal–Wallis test, complemented by the Mann–Whitney test (< 0.05). LPS treatment increased the gene expression and protein synthesis of TNF‐α, IL‐6 and IL‐8, while the expression of IL‐1β was not affected. For LPS‐treated groups, LLLT promoted significant decreases in the expression of TNF‐α, IL‐6, and IL‐8 at 1.5 J cm?2 and 3 J cm?2. These results demonstrate that LLLT promoted a beneficial biomodulatory effect on the expression of inflammatory cytokines related to oral mucositis by human gingival fibroblasts.  相似文献   

4.
Pharmacological therapy is widely used in the treatment of muscle injuries. On the other hand, low‐level laser therapy (LLLT) arises as a promising nonpharmacological treatment. The aim of this study was to analyze the effects of sodium diclofenac (topical application) and LLLT on morphological aspects and gene expression of biochemical inflammatory markers. We performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg g‐1 of solution) or LLLT (810 nm; continuous mode; 100 mW; 3.57 W cm?2; 1, 3 or 9 J; 10, 30 or 90 s). Histological analysis and quantification of gene expression (real‐time polymerase chain reaction—RT‐PCR) of cyclooxygenase 1 and 2 (COX‐1 and COX‐2) and tumor necrosis factor‐alpha (TNF‐α) were performed at 6, 12 and 24 h after trauma. LLLT with all doses improved morphological aspects of muscle tissue, showing better results than injury and diclofenac groups. All LLLT doses also decreased (< 0.05) COX‐2 compared to injury group at all time points, and to diclofenac group at 24 h after trauma. In addition, LLLT decreased (< 0.05) TNF‐α compared both to injury and diclofenac groups at all time points. LLLT mainly with dose of 9 J is better than topical application of diclofenac in acute inflammation after muscle trauma.  相似文献   

5.
《Electroanalysis》2006,18(4):410-416
Electrochemical nanosensors were used to simultaneously monitor in vitro (a single endothelial cell) and in vivo (vasculature of rat) the concentrations of NO (vasorelaxant), cytotoxic O (oxidative stress) and ONOO? (nitroxidative stress). A balance of [NO]/[ONOO?]=(K) was applied as the diagnostic marker of dysfunctional endothelium and cardiovascular disease. In the isolated endothelium of normotensive rats, K= 2.8±0.1 while in hypertensive rats, K=0.4±0.1. During ischemia, K dropped from 7±1 to 1.4±0.2 and further decreased to 0.05±0.01 during reperfusion. The edema and vasoconstriction, indicators of vascular injury, correlated directly with the decrease in K.  相似文献   

6.
This study investigated the effects of low‐level laser therapy (LLLT) in the liver function, structure and inflammation in a experimental model of carbon tetrachloride (CCl4)‐induced liver cirrhosis. Wistar rats were divided into Control, LLLT, CCl4 and CCl4+LLLT groups. CCl4 groups received CCl4 (0.4 g kg?1; i.p.), three times a week, for 12 weeks. A 830 nm LLLT was performed with a continuous wave, 35 mW, 2.5 J cm?2 per point, applied to four points of the liver (right and left upper and lower extremities, in the four lobes of the liver) for 2 weeks. Liver structure and inflammation (cirrhotic areas, collagen deposition, inflammation, density of Kupffer and hepatic stellate cells) and function (aspartate aminotransferase, alkaline phosphatase, gamma glutamyltransferase, lactate dehydrogenase, total proteins and globulins) were evaluated. LLLT significantly reduced CCl4‐increased aspartate aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), gamma‐glutamyl transferase (P < 0.001) and lactate dehydrogenase (P < 0.01) activity, as well as total proteins (P < 0.05) and globulins (P < 0.01). LLLT also reduced the number of cirrhotic areas, the collagen accumulation and the hepatic inflammatory infiltrate. Of note, LLLT reduced CCl4‐increased number of Kupffer cells (P < 0.05) and hepatic stellate cells (P < 0.05). We conclude that LLLT presents beneficial effects on liver function and structure in an experimental model of CCl4‐induced cirrhosis.  相似文献   

7.
Ultraviolet (UV) radiation, including both UVB and UVA irradiation, is the major risk factor for causing skin cancer including melanoma. Recently, we have shown that Sesn2, a member of the evolutionarily conserved stress‐inducible protein family Sestrins (Sesn), is upregulated in human melanomas as compared to melanocytes in normal human skin, suggesting an oncogenic role of Sesn2. However, the role of Sesn2 in UVB and UVA response is unknown. Here, we demonstrated that both UVB and UVA induce Sesn2 upregulation in melanocytes and melanoma cells. UVB induces Sesn2 expression through the p53 and AKT3 pathways. Sesn2 negatively regulates UVB‐induced DNA damage repair. In comparison, UVA induces Sesn2 upregulation through mitochondria but not Nrf2. Sesn2 ablation increased UVA‐induced Nrf2 induction and inhibits UVA‐induced ROS production, indicating that Sesn2 acts as an upstream regulator of Nrf2. These findings suggest previously unrecognized mechanisms in melanocyte response to UVB and UVA irradiation and potentially in melanoma formation.  相似文献   

8.
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm?1 for 48 s, for 5 days, to two points of the lesion. Twenty‐four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF‐α, TGF‐β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF‐α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.  相似文献   

9.
10.
The reduction of free radicals by bioactive membranes used for hemodialysis treatment is an important topic due to the constant rise of oxidative stress‐associated cardiovascular mortality by hemodialysis patients. Therefore, it is urgent to find an effective solution that helps to solve this problem. Polysulfone membranes enriched with α‐lipoic acid, α‐tocopherol, and with both components are fabricated by spin coating. The antioxidant properties of these membranes are evaluated in vitro by determining the lipid‐peroxidation level and the total antioxidant status of the blood plasma. The biocompatibility is assessed by quantifying the protein adsorption, platelet adhesion, complement activation, and hemolytic effect. All types of membranes show in vitro antioxidant activity and a trend to reduce oxidative stress in vivo; the best results show membranes prepared with a combination of both compounds and prove to be nonhemolytic and hemocompatible. Moreover, the membrane specific separation ability for the main waste products is not affected by antioxidants incorporation.  相似文献   

11.
The transient vanilloid receptor potential type 1 (TRPV1) regulates neuronal and vascular functions mediated by nitric oxide (NO) and by the calcitonin gene-related peptide (CGRP). Here, we study the participation of TRPV1 in the regulation of myocardial injury caused by ischemia-reperfusion and in the control of NO, tetrahydrobiopterin (BH4), the cGMP pathway, CGRP, total antioxidant capacity (TAC), malondialdehyde (MDA) and phosphodiesterase-3 (PDE-3). Isolated hearts of Wistar rats perfused according to the Langendorff technique were used to study the effects of an agonist of TRPV1, capsaicin (CS), an antagonist, capsazepine (CZ), and their combination CZ+CS. The hearts were subjected to three conditions: (1) control, (2) ischemia and (3) ischemia-reperfusion. We determined cardiac mechanical activity and the levels of NO, cGMP, BH4, CGRP, TAC, MDA and PDE-3 in ventricular tissue after administration of CS, CZ and CZ+CS. Western blots were used to study the expressions of eNOS, iNOS and phosphorylated NOS (pNOS). Structural changes were determined by histological evaluation. CS prevented damage caused by ischemia-reperfusion by improving cardiac mechanical activity and elevating the levels of NO, cGMP, BH4, TAC and CGRP. TRPV1 and iNOS expression were increased under ischemic conditions, while eNOS and pNOS were not modified. We conclude that the activation of TRPV1 constitutes a therapeutic possibility to counteract the damage caused by ischemia and reperfusion by regulating the NO pathway through CGRP.  相似文献   

12.
Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti‐inflammatory drugs (NSAIDs), however, in last years, low‐level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX‐1 and COX‐2 and blood levels of prostaglandin E2 (PGE2). All treatments significantly decreased COX‐1 and COX‐2 gene expression compared with injury group (< 0.05). However, LLLT showed better effects than TD and ID regarding PGE2 levels and walking track analysis (< 0.05). We can conclude that LLLT has more efficacy than topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage.  相似文献   

13.
Pantoprazole has an antioxidant function against reactive oxygen species (ROS). Vincamine, a herbal candidate, is an indole alkaloid of clinical use against brain sclerosis. The aim of the present experiment is to evaluate, on a molecular level for the first time, the value of vincamine in addition to pantoprazole in treating experimentally induced renal ischemia/reperfusion injury (IRI). One-hundred-and-twenty-eight healthy male Wistar albino rats were included. Serum creatinine, blood urea nitrogen, and malondialdehyde levels were assessed. ELISA was used to estimate the pro-inflammatory cytokines. The expression of Bcl-2 and Bax genes was assessed by quantitative real-time PCR. ERK1/2, JNK1/2, p38, cleaved caspase-3, and NF-κB proteins expressions were estimated using western blot assay. The kidneys were also histopathologically studied. The IRI resulted in impaired cellular functions with increased creatinine, urea nitrogen, malondialdehyde, TNF-α, IL-6, and IL-1β serum levels, and up-regulated NF-ĸB, JNK1/2, ERK1/2, p38, and cleaved caspase-3 proteins. Furthermore, it down-regulated the expression of the Bcl-2 gene and upregulated the Bax gene. The treatment with vincamine, in addition to pantoprazole multiple doses, significantly alleviated the biochemical and histopathological changes more than pantoprazole or vincamine alone, whether the dose is single or multiple, declaring their synergistic effect. In conclusion, vincamine with pantoprazole multiple doses mitigated the renal IRI through the inhibition of apoptosis, attenuation of the extracellular signaling pathways through proinflammatory cytokines’ levels, and suppression of the MAPK (ERK1/2, JNK, p38)–NF-κB intracellular signaling pathway.  相似文献   

14.
The dose-dependent cytotoxicity effect on human hepatocyte(HL-7702 cells) induced by “naked” Fe3O4 nanoparticles was assessed through cell viabilities and lactate dehydrogenase(LDH) activities. Three important oxidative indexes of the cells by glutathione peroxidase(GSH-Px), superoxide dismutase(SOD) and malondialdehyde( MDA) were determined. The good correlation of the cell viabilities with their GSH-Px, SOD and MDA levels indicated that the cytotoxicity is related to activation of oxidative stress induced by Fe3O4 nanoparticles. The oxidative stress also leads to corresponding DNA damage in a similar dose-dependent manner, followed by the changes of cell cycle and cell apoptosis. Such work provides important experimental data for the safety evaluation of superparamagnetic Fe3O4 nanoparticles.  相似文献   

15.
Acute kidney injury (AKI) is a disease caused by sudden renal dysfunction, which is an important risk factor for chronic renal failure. However, there is no effective treatment for renal impairment. Although some traditional polyherbs are commercially available for renal diseases, their effectiveness has not been reported. Therefore, we examined the nephroprotective effects of polyherbs and their relevant mechanisms in a cisplatin-induced cell injury model. Rat NRK-52E and human HK-2 subjected to cisplatin-induced AKI were treated with four polyherbs, Injinhotang (IJ), Ucha-Shinki-Hwan (US), Yukmijihwang-tang (YJ), and UrofenTM (Uro) similar with Yondansagan-tang, for three days. All polyherbs showed strong free radical scavenging activities, and the treatments prevented cisplatin-induced cell death in both models, especially at 1.2 mg/mL. The protective effects involved antioxidant effects by reducing reactive oxygen species and increasing the activities of superoxide dismutase and catalase. The polyherbs also reduced the number of annexin V-positive apoptotic cells and the expression of cleaved caspase-3, along with inhibited expression of mitogen-activated protein kinase-related proteins. These findings provide evidence for promoting the development of herbal formulas as an alternative therapy for treating AKI.  相似文献   

16.
Tirapazamine (TPZ) has been tested in clinical trials on radio‐chemotherapy due to its potential highly selective toxicity towards hypoxic tumor cells. It was suggested that either the hydroxyl radical or benzotriazinyl radical may form as bioactive radical after the initial reduction of TPZ in solution. In the present work, we studied low‐energy electron attachment to TPZ in the gas phase and investigated the decomposition of the formed TPZ? anion by mass spectrometry. We observed the formation of the (TPZ–OH)? anion accompanied by the dissociation of the hydroxyl radical as by far the most abundant reaction pathway upon attachment of a low‐energy electron. Quantum chemical calculations suggest that NH2 pyramidalization is the key reaction coordinate for the reaction dynamics upon electron attachment. We propose an OH roaming mechanism for other reaction channels observed, in competition with the OH dissociation.  相似文献   

17.
The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.  相似文献   

18.
19.
To elucidate the role of guanosine in DNA strand breaks caused by low‐energy electrons (LEEs), theoretical investigations of the LEE attachment‐induced C? O σ‐bonds and N‐glycosidic bond breaking of 2′‐deoxyguanosine‐3′,5′‐diphosphate (3′,5′‐dGMP) were performed using the B3LYP/DZP++ approach. The results reveal possible reaction pathways in the gas phase and in aqueous solutions. In the gas phase LEEs could attach to the phosphate group adjacent to the guanosine to form a radical anion. However, the small vertical detachment energy (VDE) of the radical anion of guanosine 3′,5′‐diphosphate in the gas phase excludes either C? O bond cleavage or N‐glycosidic bond breaking. In the presence of the polarizable surroundings, the solvent effects dramatically increase the electron affinities of the 3′,5′‐dGDP and the VDE of 3′,5′‐dGDP?. Furthermore, the solvent–solute interactions greatly reduce the activation barriers of the C? O bond cleavage to 1.06–3.56 kcal mol?1. These low‐energy barriers ensure that either C5′? O5′ or C3′? O3′ bond rupture takes place at the guanosine site in DNA single strands. On the other hand, the comparatively high energy barrier of the N‐glycosidic bond rupture implies that this reaction pathway is inferior to C? O bond cleavage. Qualitative agreement was found between the theoretical sequence of the bond breaking reaction pathways in the PCM model and the ratio for the corresponding bond breaks observed in the experiment of LEE‐induced damage in oligonucleotide tetramer CGTA. This concord suggests that the influence of the surroundings in the thin solid film on the LEE‐induced DNA damage resembles that of the solvent.  相似文献   

20.
A ternary complex comprising plasmid DNA, lipopolysaccharide‐binding peptide (LBP), and deoxycholic acid‐conjugated polyethylenimine (PEI‐DA) is prepared for combinational therapy of acute lung injury (ALI). The LBP is designed as an anti‐inflammatory peptide based on the lipopolysaccharide (LPS)‐binding domain of HMGB‐1. In vitro cytokine assays show that LBP reduces levels of proinflammatory cytokines by inhibiting LPS. PEI‐DA is synthesized as the gene carrier by conjugation of deoxycholic acid to low‐molecular weight polyethylenimine (2 kDa, PEI2k). PEI‐DA has higher transfection efficiency than high‐molecular weight polyethylenimine (25 kDa, PEI25k). The ternary complex of an HO‐1 plasmid (pHO‐1), PEI‐DA, and LBP is prepared as a combinational system to deliver the therapeutic gene and peptide. The transfection efficiency of the ternary complex is higher than that of the pHO‐1/PEI‐DA binary complex. The ternary complex also reduces TNF‐α secretion in LPS‐activated Raw264.7 macrophage cells. Administration of the ternary complex into the lungs of an animal ALI model by intratracheal injection induces HO‐1 expression and reduces levels of proinflammatory cytokines more efficiently than the pHO‐1/PEI‐DA binary complex or LBP alone. In addition, the ternary complex reduces inflammation in the lungs. Therefore, the pHO‐1/PEI‐DA/LBP ternary complex may be an effective treatment for ALI.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号