首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Pharmacological therapy is widely used in the treatment of muscle injuries. On the other hand, low‐level laser therapy (LLLT) arises as a promising nonpharmacological treatment. The aim of this study was to analyze the effects of sodium diclofenac (topical application) and LLLT on morphological aspects and gene expression of biochemical inflammatory markers. We performed a single trauma in tibialis anterior muscle of rats. After 1 h, animals were treated with sodium diclofenac (11.6 mg g‐1 of solution) or LLLT (810 nm; continuous mode; 100 mW; 3.57 W cm?2; 1, 3 or 9 J; 10, 30 or 90 s). Histological analysis and quantification of gene expression (real‐time polymerase chain reaction—RT‐PCR) of cyclooxygenase 1 and 2 (COX‐1 and COX‐2) and tumor necrosis factor‐alpha (TNF‐α) were performed at 6, 12 and 24 h after trauma. LLLT with all doses improved morphological aspects of muscle tissue, showing better results than injury and diclofenac groups. All LLLT doses also decreased (< 0.05) COX‐2 compared to injury group at all time points, and to diclofenac group at 24 h after trauma. In addition, LLLT decreased (< 0.05) TNF‐α compared both to injury and diclofenac groups at all time points. LLLT mainly with dose of 9 J is better than topical application of diclofenac in acute inflammation after muscle trauma.  相似文献   

2.
Muscle strains are among the most prevalent causes for athletes' absence from sport activities. Low-level laser therapy (LLLT) has recently emerged as a potential contender to nonsteroidal anti-inflammatory drugs in muscle strain treatment. In this work we investigated effects of LLLT and diclofenac on functional outcomes in the acute stage after muscle strain injury in rats. Muscle strain was induced by overloading the tibialis anterior muscle of rats during anesthesia. The injured groups received either no treatment, or a single treatment with diclofenac 30 min prior to injury, or LLLT (810 nm, 100 mW) with doses of 1, 3, 6 or 9 J, at 1 h after injury. Functional outcome measures included a walking index and assessment of electrically induced muscle performance. All treatments (except 9 J LLLT) significantly improved the walking index 12 h postinjury compared with the untreated group. The 3 J group also showed a significantly better walking index than the drug group. All treatments significantly improved muscle performance at 6 and 12 h. LLLT dose of 3 J was as effective as the pharmacological agent in improving functional outcomes in the early phase after a muscle strain injury in rats.  相似文献   

3.
Heat shock protein‐27 (HSP27) is a member of the small HSP family which has been linked to the nuclear factor‐kappa B (NF‐κB) signaling pathway regulating inflammatory responses. Clinical reports have suggested that low‐level light therapy/laser irradiation (LLLT) could be an effective alternative treatment to relieve inflammation during bacterial infection associated with periodontal disease. However, it remains unclear how light irradiation can modulate the NF‐κB signaling pathway. We examined whether or not 635 nm irradiation could lead to a modulation of the NF‐kB signaling pathway in HSP27‐silenced cells and analyzed the functional cross‐talk between these factors in NF‐κB activation. The results showed that 635 nm irradiation led to a decrease in the HSP27 phosphorylation, reactive oxygen species (ROS) generation, I‐κB kinase (IKK)/inhibitor of κB (IκB)/NF‐κB phosphorylation, NF‐κB p65 translocation and a subsequent decrease in the COX‐1/2 expression and prostaglandin (PGE2) release in lipopolysaccharide(LPS)‐induced human gingival fibroblast cells (hGFs). However, in HSP27‐silenced hGFs, no obvious changes were observed in ROS generation, IKK/IκB/NF‐κB phosphorylation, NF‐κB p65 translocation, nor in COX‐1/2 expression, or PGE2 release. This could be a mechanism by which 635 nm irradiation modulates LPS‐induced NF‐κB signaling pathway via HSP27 in inflammation. Thus, HSP27 may play a role in regulating the anti‐inflammatory response of LLLT.  相似文献   

4.
In this study, we aimed to analyze the effects of low‐level laser therapy (LLLT; 660 nm) on levels of protein expression of inflammatory mediators after cutting Achilles tendon of rats. Thirty Wistar male rats underwent partial incisions of the left Achilles tendon, and were divided into three groups of 10 animals according to the time of euthanasia after injury: 6, 24 and 72 h. Each group was then divided into control group and LLLT group (treated with 100 mW, 3.57 W cm?2, 0.028 cm2, 214 J cm?2, 6 J, 60 s, single point). In LLLT group, animals were treated once time per day until the time of euthanasia established for each group. The group treated with LLLT showed a significant reduction of IL‐1β compared with control groups at three time points (6 h: P = 0.0401; 24 h: P = 0.0015; 72 h: P = 0.0463). The analysis of IL‐6 showed significant reduction only in the LLLT group at 72 h compared with control group (P = 0.0179), whereas IL‐10 showed a significant increase in the treated group compared with control group at three experimental times (6 h: P = 0.0007; 24 h: P = 0.0256; 72 h: P < 0.0001). We conclude that LLLT is an important modulator of inflammatory cytokines release after injury in Achilles tendon.  相似文献   

5.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are widely used and can reduce musculoskeletal pain in spite of the cost of adverse reactions like gastrointestinal ulcers or cardiovascular events. The current study investigates if a safer treatment such as low-level laser therapy (LLLT) could reduce tendinitis inflammation, and whether a possible pathway could be through inhibition of either of the two-cyclooxygenase (COX) isoforms in inflammation. Wistar rats (six animals per group) were injected with saline (control) or collagenase in their Achilles tendons. Then, we treated them with three different doses of IR LLLT (810 nm; 100 mW; 10 s, 30 s and 60 s; 3.57 W cm(-2); 1 J, 3 J, 6 J) at the sites of the injections, or intramuscular diclofenac, a nonselective COX inhibitor/NSAID. We found that LLLT dose of 3 J significantly reduced inflammation through less COX-2-derived gene expression and PGE(2) production, and less edema formation compared to nonirradiated controls. Diclofenac controls exhibited significantly lower PGE(2) cytokine levels at 6 h than collagenase control, but COX isoform 1-derived gene expression and cytokine PGE(2) levels were not affected by treatments. As LLLT seems to act on inflammation through a selective inhibition of the COX-2 isoform in collagenase-induced tendinitis, LLLT may have potential to become a new and safer nondrug alternative to coxibs.  相似文献   

6.
In this study, substituted indoline‐based dihydroxy‐carbamides ( 5a–i ) were synthesized and evaluated as the cyclooxygenase‐2 (COX‐2) inhibitors to testify their inflammatory regulations through COX‐2 inhibition. Enzyme‐linked immunosorbent assay‐based competitive (COX‐2) inhibition (in vitro) followed by a molecular docking study (in silico) was executed to ensure the mode of interaction between 5a–i and COX‐2. Apart from COX‐2 inhibition studies, free‐radical scavenging ability (H2O2 estimation method) and the human red blood cell membrane protection (in vitro anti‐inflammatory) capability of the compounds 5a–i assessment were also evaluated. Excellent antimicrobial and anticancer activity exhibited by thiocarbamide substituted compounds ( 5a–d ) than carbamide ( 5e–i ). In molecular docking studies, the obtained binding affinity values of 5a–i indicated the therapeutic selectivity on COX‐2 (PDB ID: 1CX2) over COX‐1 (PDB ID: 1EQG). Established inhibitory constant (ki) values were found as low as in nanomolar/picomolar against COX‐2. Reliable COX‐2 inhibition of 78–92% and IC50 0.002–1.28 μM were obtained. Human red blood cell membrane was found to be effectively stabilized/protected by 5a–i up to 98%. Excellent antioxidant property (average radical scavenging 92%) and structure–activity relationship predictions confirmed the druggability potentials of 5a–i as effective, future anti‐inflammatory drugs. The cytotoxicity of the compounds was also unveiled by MTT assay using MCF‐7 (human breast cancer), SW620 (human colon cancer), G361 (human skin cancer), human breast normal cell lines (MCF‐10), and cell lines.  相似文献   

7.
Novel sulfonamide containing diaryl pyrazoles were synthesized and were subsequently tested for their in vitro cyclooxygenase inhibitory assay. Compounds that showed promising in vitro COX‐2 IC50 values and selectivity indices were then evaluated for their in vivo anti‐inflammatory inhibition assay using standard carrageenan‐induced rat paw edema method. Two promising inhibitors were evaluated for ulcerogenic liability. X‐ray crystal structure of COX‐2 was taken from PDB entry COX‐2 (3LN1) having a resolution of 2.80 Å (Angstroms). Structural preparations for docking studies were accomplished using protein preparation wizard in Maestro 9.0. Compound 10b displayed reasonable COX‐2 inhibition (COX‐2 IC50 = 0.52 μM) and COX‐2 selectivity index (SI = 10.73) when compared with celecoxib (COX‐2 IC50 = 0.78 μM) and (SI = 9.51). In vivo anti‐inflammatory studies demonstrated 64.28% inhibition for 10b in comparison with the 57.14% for that of celecoxib itself. The results of ulcerogenic liability were also found comparable with standard celecoxib. Molecular docking studies revealed that all the designed molecules showed good interactions with receptor active site with glide scores in the range −13.130 to −10.624.  相似文献   

8.
Three novel paramagnetic metal complexes (MH2ID) of Ni2+, Cu2+ and VO2+ ions with 3‐hydroxy‐3,3’‐biindoline‐2,2’‐dione (dihydroindolone, H4ID) were synthesized and characterized by different spectroscopic methods. The ligand (H4ID) was synthesized via homocoupling reaction of isatin in presence of phenylalanine in methanol. Complexation of low valent Ni2+, Cu2+ ions and high valent VO2+ ions with H4ID carried out in 1: 2 molar ratios. A comparison in the catalytic potential of paramagnetic complexes of low and high valent metal ion was explored in the oxidation processes of cis‐cyclooctene, benzyl alcohol and thiophene by an aqueous H2O2, as a green terminal oxidant, in the presence and absence of acetonitrile, as an organic solvent, at 85 °C. NiH2ID, CuH2ID and VOH2ID show good catalytic activity, i.e. good chemo‐ and regioselectivity. VOH2ID has the highest catalytic potential compared to both Ni2+‐ and Cu2+‐species in the same homogenous aerobic atmosphere. Catalytic oxidation of other alkenes and alcohols was also studied using NiH2ID, CuH2ID or VOH2ID as a pre‐catalyst by an aqueous H2O2. A mechanistic pathway for those oxidation processes was proposed.  相似文献   

9.
This study investigated the effects of low‐level laser therapy (LLLT) in the liver function, structure and inflammation in a experimental model of carbon tetrachloride (CCl4)‐induced liver cirrhosis. Wistar rats were divided into Control, LLLT, CCl4 and CCl4+LLLT groups. CCl4 groups received CCl4 (0.4 g kg?1; i.p.), three times a week, for 12 weeks. A 830 nm LLLT was performed with a continuous wave, 35 mW, 2.5 J cm?2 per point, applied to four points of the liver (right and left upper and lower extremities, in the four lobes of the liver) for 2 weeks. Liver structure and inflammation (cirrhotic areas, collagen deposition, inflammation, density of Kupffer and hepatic stellate cells) and function (aspartate aminotransferase, alkaline phosphatase, gamma glutamyltransferase, lactate dehydrogenase, total proteins and globulins) were evaluated. LLLT significantly reduced CCl4‐increased aspartate aminotransferase (P < 0.001), alkaline phosphatase (P < 0.001), gamma‐glutamyl transferase (P < 0.001) and lactate dehydrogenase (P < 0.01) activity, as well as total proteins (P < 0.05) and globulins (P < 0.01). LLLT also reduced the number of cirrhotic areas, the collagen accumulation and the hepatic inflammatory infiltrate. Of note, LLLT reduced CCl4‐increased number of Kupffer cells (P < 0.05) and hepatic stellate cells (P < 0.05). We conclude that LLLT presents beneficial effects on liver function and structure in an experimental model of CCl4‐induced cirrhosis.  相似文献   

10.
Intervertebral disc degeneration (IVD) is one of the important causes of low back pain and is associated with inflammation induced by interaction between macrophages and the human annulus fibrosus (AF) cells. Low‐level light therapy (LLLT) has been widely known to regulate inflammatory reaction. However, the effect of LLLT on macrophage‐mediated inflammation in the AF cells has not been studied till date. The aim of this study is to mimic the inflammatory microenvironment and to investigate the anti‐inflammatory effect of LLLT at a range of wavelengths (405, 532 and 650 nm) on the AF treated with macrophage‐like THP‐1 cells conditioned medium (MCM) containing proinflammatory cytokines and chemokines (interleukin‐1beta, tumor necrosis factor‐alpha, interleukin‐6 and 8). We observed that AF cells exposed to MCM secrete significantly higher concentrations of IL‐6, IL‐8, IL‐1β and TNF‐α. LLLT markedly inhibited secretion of IL‐6 at 405 nm in a time‐dependent manner. Level of IL‐8 was significantly decreased at all wavelengths in a time‐dependent manner. We showed that MCM can induce the inflammatory microenvironment in AF cells and LLLT selectively suppressed IL‐6 and 8 levels. The results indicate that LLLT is a potential method of IVD treatment and provide insights into further investigation of its anti‐inflammation effect on IVD.  相似文献   

11.
The aim of this study was to evaluate the effects of a Gallium Arsenide (GaAs) laser, using a high final energy of 4.8 J, during muscle regeneration after cryoinjury. Thirty Wistar rats were divided into three groups: Control (C, n = 10); Injured (I, n = 10) and Injured and laser treated (Injured/LLLT, n = 10). The cryoinjury was induced in the central region of the tibialis anterior muscle (TA). The applications of the laser (904 nm, 50 mW average power) were initiated 24 h after injury, at energy density of 69 J cm?1 for 48 s, for 5 days, to two points of the lesion. Twenty‐four hours after the final application, the TA muscle was removed and frozen in liquid nitrogen to assess the general muscle morphology and the gene expression of TNF‐α, TGF‐β, MyoD, and Myogenin. The Injured/LLLT group presented a higher number of regenerating fibers and fewer degenerating fibers (P < 0.05) without changes in the collagen remodeling. In addition, the Injured/LLLT group presented a significant decrease in the expression of TNF‐α and myogenin compared to the injured group (P < 0.05). The results suggest that the GaAs laser, using a high final energy after cryoinjury, promotes muscle recovery without changing the collagen remodeling in the muscle extracellular matrix.  相似文献   

12.
The aim of the present study was to evaluate the comparative effects of red (660‐nm) and near‐infrared (780‐nm) low‐level laser therapy (LLLT) on viability, mitochondrial activity, morphology and gene expression of growth factors on Schwann cells (SC). ST88‐14 cells were grown in RPMI 1640 with 10 mM of HEPES, 2 mM of glutamine, 10% fetal bovine serum and 1% antibiotic‐antimycotic solution at 37°C in humidified atmosphere of 5% CO2. Cells were detached with trypsin and centrifugated at 231 g for 5 min at 10°C, and the pellet (8 × 104 cells/tube) was irradiated at the bottom of 50 ml polypropylene tube with a Twin‐Laser system (660 and 780 nm, 40 mW, 1 mW cm?2, 3.2 and 6.4 J, 80 and 160 J cm?2 with 80 and 160 s). After 1, 3 and 7 days, the analysis was performed. After irradiation, the SC increase mitochondrial activity, gene expression of the neural growth factors NGF and BDNF, and cell migration and increase the G2/M cells. SC showed neuronal morphology, normal F‐actin cytoskeleton organization and positive labeling for S100. PBM increased metabolic activity, mitosis and gene expression when irradiated with red and infrared LLLT. An increase in cell migration was obtained when irradiated with infrared LLLT.  相似文献   

13.
Low-level light therapy (LLLT) increases survival of cultured cells, improves behavioral recovery from neurodegeneration and speeds wound healing. These beneficial effects are thought to be mediated by upregulation of mitochondrial proteins, especially the respiratory enzyme cytochrome oxidase. However, the effects of in vivo LLLT on cytochrome oxidase in intact skeletal muscle have not been previously investigated. We used a sensitive method for enzyme histochemistry of cytochrome oxidase to examine the rat temporalis muscle 24 h after in vivo LLLT. The findings showed for the first time that in vivo LLLT induced a dose- and fiber type-dependent increase in cytochrome oxidase in muscle fibers. LLLT was particularly effective at enhancing the aerobic capacity of intermediate and red fibers. The findings suggest that LLLT may enhance the oxidative energy metabolic capacity of different types of muscle fibers, and that LLLT may be used to enhance the aerobic potential of skeletal muscle.  相似文献   

14.
A group of rofecoxib analogs, having a sulfonylazide (SO2N3) substituent in place of the methanesulfonyl (SO2CH3) pharmacophore at the meta‐position viz 3‐(4‐methyl, 4‐methoxy, or 4‐ethoxyphenyl)‐4‐(3‐sulfonylazidophenyl)‐2(5H)furanone ( 7a‐c ) and para‐position viz 3‐phenyl‐4‐(4‐sulfonylazidophenyl)‐2(5H)furanone ( 7d ), 3‐(4‐fluoro, or 4‐chlorophenyl)‐4‐(4‐sulfonylazidophenyl)‐2(5H)furanone ( 7e‐f ) of the C–4 phenyl ring, and 4‐(1‐oxido‐4‐pyridyl)‐3‐phenyl‐2(5H)furanone ( 12 ) were designed and synthesized for evaluation as selective cyclooxygenase‐2 (COX‐2) inhibitors. In vitro COX‐1/COX‐2 enzyme inhibition studies showed that 3‐phenyl‐4‐(4‐sulfonylazidophenyl)‐2(5H)furanone ( 7d ) inhibited COX‐1 selectively (COX‐1 IC50 = 0.6659 μM; COX‐2 IC50 > 100 μM) and 3‐(4‐fluorophenyl)‐4‐(4‐sulfonylazidophenyl)‐2(5H)furanone ( 7e ) inhibited both enzymes (COX‐1 IC50 = 0.8494 μM; COX‐2 IC50 = 1.7661 μM). A molecular modeling study was performed where 3‐(4‐fluorophenyl)‐4‐(4‐sulfonylazidophenyl)‐2(5H)furanone ( 7e ) was docked in the active site of murine COX‐2 isozyme, which showed that the sulfonylazido group inserts deep into the 2°‐pocket of COX‐2 where it undergoes both H‐bonding (Gln192, Phe518) and weak electrostatic (Arg513) interactions.  相似文献   

15.
A new series of cycloplatinated (II) complexes with general formulas of [Pt (bhq)(N3)(P)] [bhq = deprotonated 7,8‐benzo[h]quinoline, P = triphenyl phosphine (PPh3) and methyldiphenyl phosphine], [Pt (bhq)(P^P)]N3 [P^P = 1,1‐bis (diphenylphosphino)methane (dppm) and 1,2‐bis (diphenylphosphino)ethane] and [Pt2(bhq)2(μ‐P^P)(N3)2] [P^P = dppm and 1,2‐bis (diphenylphosphino)acetylene] is reported in this investigation. A combination of azide (N3?) and phosphine (monodentate and bidentate) was used as ancillary ligands to study their influences on the chromophoric cyclometalated ligand. All complexes were characterized by nuclear magnetic resonance spectroscopy. To confirm the presence of the N3? ligand directly connected to the platinum center, complex [Pt (bhq)(N3)(PPh3)] was further characterized by single‐crystal X‐ray crystallography. The photophysical properties of the new products were studied by UV–Vis spectroscopy in CH2Cl2 and photoluminescence spectroscopy in solid state (298 or 77 K) and in solution (77 K). Using density functional theory calculations, it was proved that, in addition to intraligand charge‐transfer (ILCT) and metal‐to‐ligand charge‐transfer (MLCT) transitions, the L′LCT (L′ = N3, L = C^N) electronic transition has a remarkable contribution in low energy bands of the absorption spectra (for complexes [Pt (bhq)(N3)(P)] and [Pt2(bhq)2(μ‐P^P)(N3)2]). It is indicative of the determining role of the N3? ligand in electronic transitions of these complexes, specifically in the low energy region. In this regard, the photoluminescence studies indicated that the emissions in such complexes originate from a mixed 3ILCT/3MLCT (intramolecular) and also from aggregations (intermolecular).  相似文献   

16.
Vanadium(IV) Schiff base complexes (VOL1‐VOL3) were synthesized and characterized by elemental analysis, various spectral methods and single crystal XRD studies. Structural analysis of VOL2 reveals that the central vanadium ion in the complex is six coordinate with distorted octahedral geometry. Density functional theory (DFT) and time dependent (TD‐DFT) studies were used to understand the electronic transitions observed in the complexes in UV–Vis spectra. The electrochemical behavior of the complexes was investigated in acetonitrile medium exhibit quasi‐reversible one electron transfer. The DNA and BSA protein binding interaction of vanadium complexes has been explored by UV–Vis and fluorescence spectral methods and viscosity measurements reveal that the complexes interact with CT‐DNA through intercalation mode and follows the order VOL1 < VOL3 < VOL2. The complexes exhibit binding interactions with BSA protein. The complexes act as chemical nuclease and cleave DNA in the presence of H2O2. The 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) assay was used to evaluate the radical scavenging activity demonstrate the antioxidant property of the complexes. The antimicrobial activity was screened for several microorganisms, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli. The mimicking of vanadium haloperoxidase was investigated by the bromination of the organic substrate phenol red by vanadium complexes in the presence of bromide and H2O2.  相似文献   

17.
In the present study, a series of novel pyrido[1,2‐a]pyrimidin‐4‐one derivatives ( 1 – 45 ) were synthesized, characterized, and evaluated for their anti‐inflammatory activity. The structures of all newly synthesized compounds were confirmed by 1H NMR, 13C NMR, mass spectroscopy, and C, H, and N analyses. Preliminary these newly synthesized compounds were evaluated for their in vitro cyclooxygenase (COX)‐2/COX‐1 inhibitory activity. The celecoxib, a COX‐2 inhibitor, was used as a reference standard drug. In this inhibitory study, compounds 42 , 43 , 44 , and 45 were found to have significant in vitro inhibitory profile as compared with the reference drug. These compounds were then subjected to their in vivo anti‐inflammatory assay by using carrageenan‐induced rat paw edema method in next level of screening. Later, these same compounds were tested for their ulcerogenic property. Based on these activity data, the compound 43 (in vitro COX‐2 activity—IC50 = 0.4 μM, SI = 400, in vivo anti‐inflammatory activity—72% inhibition after 3 h, and 0.38%—Ulcer index) was emerged as most promising anti‐inflammatory agent with very low ulcerogenic action.  相似文献   

18.
Several in vitro studies evaluated the cellular and molecular events related to interactions between phototherapy and target tissues, including oral keratinocytes and fibroblasts, providing elucidative data about phototherapy‐induced healing. However, these interactions were limited to the application of a bidimensional cell culture model of oral mucosal cells. Thus, thisstudy evaluated the use of an organotypic oral epithelium model to elucidate the morphological and phenotypic responses of cells subjected to low‐level laser therapy (LLLT). Oral keratinocytes were seeded in the ex vivo ‐produced oral mucosal equivalent (EVPOME ) model, with a porcine acellular dermal matrix. LLLT was applied by means of the LaserTABLE device (780 nm, 25 mW ) at 0.5, 1.5 and 3 J cm−2. After three irradiations, morphology, proliferation and gene expression of growth factors were assessed. LLLT and control groups presented similar morphological features, characterized by the formation of a stratified, differentiated and keratinized epithelium. LLLT enhanced the cell proliferation and gene expression of keratinocytes (hKGF ) as well as epidermal (hEGF ) growth factors. In general, analysis of these data shows that the three‐dimensional cell culture model can be applied for phototherapy studies and that the positive effects of LLLT were confirmed by the use of an organotypic model.  相似文献   

19.
The three‐coordinate Ag atom in the title compound, [Ag(C7H3N2O6)(C18H15P)2], shows trigonal–planar coordination [P—Ag—P = 147.1 (1)° and ΣAg = 359.0 (3)°]. Adjacent mol­ecules are linked through the O atoms of adjacent nitro groups [Ag?O = 3.205 (3) and 3.302 (4) Å] into a zigzag chain running parallel to the c axis.  相似文献   

20.
Various antimicrobial modalities have been proposed to treat peri‐implantitis but resulted in limited outcomes. The aim of this in vitro study was to evaluate the disinfection efficacy of combined application of chlorhexidine digluconate (CHX) and antimicrobial photodynamic therapy (aPDT) of titanium surfaces previously contaminated with Porphyromonas gingivalis biofilm. P. gingivalis biofilms were grown on 32 polished and 32 sandblasted large‐grit acid‐etched (SLA) titanium surfaces. Titanium disks were allocated into four groups as follows: (1) immersed in phosphate‐buffered saline (PBS), (2) immersed in 0.2% CHX, (3) application of aPDT and (4) immersed in 0.2% CHX and subsequent aPDT. Residual bacteria were determined by microbial culture analysis and by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) imaging. Combination protocol (CHX+ aPDT) was the most effective in eradicating P. gingivalis (< 0.05) on both polished and SLA surfaces. There was no significant difference in the number of remaining P. gingivalis between polished titanium disks and the SLA ones in four groups (> 0.05). Under the limitation of this study, combined technique of preceding application of CHX and subsequent aPDT was shown to be an efficient method in reducing P. gingivalis numbers in both polished and SLA titanium surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号