首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The crystallization behavior of isotactic polypropylene (iPP)/silica particle (SiO2, 26 nm) nanocomposite has been investigated. In addition to the non surface-modified SiO2, iPP grafted SiO2 was synthesized and adopted to this study with an aim to understand the role of grafted polymer chain on the crystallization process. The crystallization rate of non surface-modified iPP/SiO2 composite stays constant up to 1 vol%. It suggests the very weak nucleation ability of nano-sized silica particle. While large acceleration effect was observed for iPP-grafted SiO2/iPP composite. The spherulite density increased with increasing SiO2 contents, and more interestingly, the spherulite growth rate also increased. This finding leads to the conclusion that the grafted iPP chain has a plasticizing effect that reduces the chain entanglements at the interface. Further increase in SiO2 contents, the crystallization rate, the spherulite density, and the spherulite growth rate showed the steep decreases at higher SiO2 content range regardless of the surface modifications of SiO2. It was attributed to the confinement of matrix chain since the inter-particle distance of adjacent SiO2 approaches to the end-to-end distance of matrix chain, which a large molecular motion is restricted. Moreover, the average size of SiO2 aggregation in iPP matrix was successfully evaluated by analyzing the contents dependence of the growth rate, assuming that the inter-particle distance with zero growth rate coincided with end-to-end distance of matrix iPP chain.  相似文献   

2.
A new technique based on light depolarizing microscopy was developed for studying non-isothermal crystallization of polymers at average cooling rates up to about 5000°C/min. The polymer is cooled down by a gaseous cooling medium supplied at a constant temperature. The temperature of polymer is measured by a thermocouple imbedded directly in the sample. A heat transfer analysis was used to establish appropriate sample geometry to assure that, under the applied cooling condition, the temperature distribution along the sample thickness can be neglected. A light-scattering effect, which occurs when crystallization is carried out under high cooling rates, was observed. This required the development of a method to correct the depolarized light intensity for the effect of light scattering. An appropriate correction method was developed based on both a theoretical and an experimental analysis of the light intensity measurement. This provided a means to measure the overall crystallization kinetics. Examples of such measurements for iPP, HDPE, and LDPE are presented. In addition to the overall crystallization kinetics, the developed technique includes a video camera and VCR system used for measurements of spherulite growth rates during crystallization under high cooling rates. Constant spherulite growth rates were observed for isotactic polypropylene crystallized under very non-isothermal conditions. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The development of the morphology in poly(vinylidene fluoride)/poly(3‐hydroxybutyrate) (PVDF/PHB) blends upon isothermal and anisothermal crystallization is investigated by time‐resolved small‐ and wide‐angle X‐ray scattering. The components are completely miscible in the melt but crystallize separately; they crystallize stepwise at different temperatures or sequentially with isothermal or anisothermal conditions, respectively. The PVDF crystallizes undisturbed whereas PHB crystallizes in a confined space that is determined by the existing supermolecular structure of the PVDF. The investigations reveal that composition inhomogeneities may initially develop in the remaining melt or in the amorphous phases of the PVDF upon crystallization of that component. The subsequent crystallization of the PHB depends on these heterogeneities and the supermolecular structure of PVDF (dendritically or globularly spherulitic). PHB may form separate spherulites that start to grow from the melt, or it may develop “interlocking spherulites” that start to grow from inside a PVDF spherulite. Occasionally, a large number of PVDF spherulites may be incorporated into PHB interlocking spherulites. The separate PHB spherulites may intrude into the PVDF spherulites upon further growth, which results in “interpenetrating spherulites.” Interlocking and interpenetrating are realized by the growth of separate lamellar stacks (“fibrils”) of the blend components. There is no interlamellar growth. The growth direction of the PHB fibrils follows that of the existing PVDF fibrils. Depending on the distribution of the PHB molecules on the interlamellar and interfibrillar PVDF regions, the lamellar arrangement of the PVDF may contract or expand upon PHB crystallization and the adjacent fibrils of the two components are linked or clearly separated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 974–985, 2004  相似文献   

4.
In polymer blends of an amorphous and a semicrystalline component, the crystallization kinetics and the resulting morphology are heavily determined by the diffusion ability of the whole chains and by the dwelling site of the amorphous polymer. Depending on the relative rates of spherulite growth and chain diffusion, radial composition profiles around the growing spherulites and a gradual increase of the melt bulk composition can develop. The resulting change in composition, particularly at the crystallization front, causes a corresponding temporal variation of the spherulite growth rate. In the present article, two experimental techniques are introduced to prove the existence and to determine the course of these concentration profiles. They are based on the composition dependences of the spherulite growth rate and the number density of primary nuclei. Their efficiency is demonstrated by measurements on PVDF/PEA blends. The blend composition at the crystal growth front was found to change by absolute 25%, and the width of the profile can amount to up to 70 μm. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
The self-assembly and bioactivity of the peptide–polymer conjugate DGRFFF–PEG3000 containing the RGD cell adhesion motif has been examined, in aqueous solution. The conjugate is designed to be amphiphilic by incorporation of three hydrophobic phenylalanine residues as well as the RGD unit and a short poly(ethylene glycol) (PEG) chain of molar mass 3000 kg mol−1. Above a critical aggregation concentration, determined by fluorescence measurements, signals of β-sheet structure are revealed by spectroscopic measurements, as well as X-ray diffraction. At high concentration, a self-assembled fibril nanostructure is revealed by electron microscopy. The fibrils are observed despite PEG crystallization which occurs on drying. This suggests that DGRFFF has an aggregation tendency that is sufficiently strong not to be prevented by PEG crystallization. The adhesion, viability and proliferation of human corneal fibroblasts was examined for films of the conjugate on tissue culture plates (TCPs) as well as low attachment plates. On TCP, DGRFFF–PEG3000 films prepared at sufficiently low concentration are viable, and cell proliferation is observed. However, on low attachment surfaces, neither cell adhesion nor proliferation was observed, indicating that the RGD motif was not available to enhance cell adhesion. This was ascribed to the core–shell architecture of the self-assembled fibrils with a peptide core surrounded by a PEG shell which hinders access to the RGD unit.  相似文献   

6.
牛艳华 《高分子科学》2017,35(11):1402-1414
The overall crystallization kinetics and spherulite morphologies of miscible poly(ethylene oxide)(PEO)/1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_6]) mixtures were studied by differential scanning calorimetry(DSC),polarized optical microscopy(POM) and rheological measurements. The finer crystal structures were further detected by wide angle X-ray diffraction(WAXD) and small angle X-ray scattering(SAXS). Crystallization of PEO is largely suppressed by [BMIM][PF_6] addition especially at higher ionic liquid(IL) concentrations above 20 wt%. Both the overall crystallization rate and the spherulite growth decrease with the increase of IL content and crystallization temperature; however, the crystallization mechanism keeps unchanged as evidenced by the similar Avrami exponent n and WAXD results. The addition of [BMIM][PF_6] could induce more nuclei to some extent, but the induction time of crystallization is evidently prolonged,and a linear to non-linear transition of the spherulite growth(R ∝ t to R ∝ t~(1/2)) can be observed. At higher IL concentration,the spherulite texture changes apparently from particular serrated to branch surface due to the diffusion-controlled growth and the dilution effect, which also as a main factor contributes to the increasing trend of the long period of crystals.  相似文献   

7.
Upon crystalline solidification of one component in a homogeneously molten polymer blend, composition profiles develop outside (i.e., in the rest melt) and behind (i.e., within the spherulites) the crystal growth front. The present article is devoted to the detailed verification and the interpretation of these distributions and their temporal development inside growing spherulites. To this end, the energy dispersive X‐ray emission (EDX) of suitable elements has been recorded locally resolved in a scanning electron microscope and evaluated correspondingly. The investigations were performed at the melt homogeneous blend of poly(vinylidene fluoride) (PVDF) as crystallizing and poly(methyl methacrylate) (PMMA) as steadily amorphous component. If the spherulites are not volume filling, the mean PMMA content 〈?PMMA〉 inside the PVDF spherulites is for all blends about 0.2 below the starting composition. ?PMMA increases however slightly from the center of a spherulite to its border. That increase reflects the PMMA concentration in front of the spherulite surface, which increases likewise with time, and is clearly above the initial composition. There is at the spherulite surface, consequently, a remarkable jump in composition from the spherulite internal to its amorphous surroundings. It may amount up to 0.5. With volume filling spherulites, a slight variation of the composition from the center of a spherulite to its border is observed, too. This proves that also at these conditions composition profiles develop in the spherulite's surroundings. They remain however so weak that they do not inhibit crystallization even in its later stages. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 338–346, 2006  相似文献   

8.
By small-angle x-ray scattering, a systematic investigation was performed of the long spacing of poly(ethylene terephthalate) (PET) crystallized in a liquid environment. The results indicated that the measured long spacings were temperature dependent and apparently relatively insensitive to liquid type under the conditions studied. The kinetic nucleation model of polymer crystallization was found to adequately explain this dependence. The differences in the long spacings between thermal and liquid-induced crystallization were in part rationalized in terms of the suspected supercoolings involved in the respective processes. Calculation of the spherulite growth rates for liquid-induced crystallization was made on the basis of the kinetic nucleation model and the classic theory of polymer–diluent crystallization. The results were shown to agree with inferential experimental observations of these growth rates and to elucidate the physics underlying liquid–induced crystallization. Finally, use of this growth rate theory in conjunction with a previous model for overall crystallization kinetics was shown to adequately describe and predict the diffusion-limited kinetics observed experimentally for most liquid-induced crystallization situations.  相似文献   

9.
As an extension of earlier work on the crystallization kinetics of isotactic polystyrene, the spherulite growth rate in mixtures of isotactic polystyrene and benzophenone has been measured over a concentration range extending from pure polymer to a mixture containing about 30% benzophenone. The glass transition temperature has been measured over the entire range from pure polymer to pure benzophenone. For the mixtures the dependence of the growth rate on temperature is similar to that of the undiluted polymer. The addition of benzophenone causes a shift of the crystallization range to lower temperatures. For mixtures containing up to about 20% benzophenone, the maximum in the growth rate increases with increasing content of benzophenone. On addition of more benzophenone, the maximum rate is depressed. Taking into account the glass transition temperature of the mixtures, the influence of benzophenone on the melting point of isotactic polystyrene, and the volume fraction of polymer, we can describe the influence of benzophenone on the growth rate in a semiquantitative way.  相似文献   

10.
Spatiotemporal emergence of lamellar branching morphology of polymer spherulite has been investigated theoretically in the framework of a phase field model by coupling a crystal solidification potential pertaining to a nonconserved crystal order parameter with a temperature field generated by latent heat of crystallization. A local free-energy density having an asymmetric double well has been utilized to account for a first-order phase transition such as crystallization. To account for the polymorphous nature of polymer crystallization, the phase field order parameter of crystal at the solidification potential of the double-well local free-energy density is modified to be supercooling dependent. The heat conduction equation, incorporating liberation of latent heat along the nonuniform solid-liquid interface, has led to directional growth of various hierarchical structures including lamella, sheaflike structure, and spherulite. Two-dimensional calculations have been carried out based on experimentally accessible material parameters and experimental conditions for the growth of syndiotactic polypropylene spherulite. The simulations illustrate that, under self-generated thermal field, the initial nucleus is anisotropic having lamellar stacks that transforms to a sheaflike structure and eventually to a lamellar branching morphology with a dual-eye-pocket texture at the core. It appears that the released latent heat is responsible for the lamellar side branching and splaying from the main lamellae. On the same token, the heat build-up seemingly prevents the interface boundaries of neighboring spherulites from over running on each other during impingement, thereby forming the grain boundary.  相似文献   

11.
自从Wundedich等报道聚乙烯(PE)在高压结晶时可以生成伸直链晶体以来,相继很多有关聚合物体系的高压结晶行为方面的研究已见报道.研究结果表明,聚合物在高压下经历相转变时可产生非常丰富的微观结构,而球晶及伸直链晶体是其中最常见的两种结晶形态.但是,所观察到的这两种聚合物晶体都是分别存在,且独立生长的.到目前为止,尚未见到关于高压下球晶可以在伸直链晶体内部存在的报道.  相似文献   

12.
The morphological structure and mechanism of nucleation and growth of Ln-PB and Ni-PBwith different molecular weight were investigated by transmission electron microscopy. The crys-tallization of low molecular weight fraction is primarily from predetermined nuclei, crystallizationfor the high molecular weight fraction is primarily from sporadic nuclei. Two types morphologyof spherulite with different lamellar entanglement have been observed. The entanglement of highermolecular weight fractions are found to be of significance in the morphology and rate of crystallizationof polymer.  相似文献   

13.
Crystallization kinetics of crystalline fractions of propylene oxide polymers made with different catalysts have been studied by isothermal dilatometric and microscopical measurements. Isothermal microscopical measurements indicate that spherulite growth in these polymers proceeds from predetermined nuclei. The half time for spherulitic appearance is less than, but of the same order as, the half time for complete crystallization. Only by taking this factor into account can the dilatometric data be represented by the Avrami equation. The deviation of the crystallization isotherm from that predicted from the microscopical data using the Avrami theory is attributed to a secondary crystallization process taking place within the spherulite. Crystallization continues long after spherulites completely occupy the available volume in the polymer. By assuming that the secondary crystallization proceeds as a first-order process in the uncrystallized, but crystallizable, portions of the melt, it is shown that the crystallization isotherms can be completely described in terms of four parameters. These are: (1) the time constant for the primary crystallization process; (2) the time constant for nucleation; (3) the time constant for the secondary crystallization process, and (4) the extent of secondary crystallization. The important conclusions of these studies are: the rates of nucleation and of spherulitic growth are far more dependent on temperature than on stereoregularity; the ratio of the rate of the secondary crystallization process to that of the primary crystallization process is almost independent of temperature, but increases with increasing stereoregularity of the polymer.  相似文献   

14.
由乙烯高效催化聚合而得的超高分子量聚乙烯的研究   总被引:1,自引:1,他引:0  
本工作系研究以高效催化聚合获得的超高分子量聚乙烯的结构和性能。用扫描电子显微镜观察了高效催化剂及初生聚乙烯的形态。透射电子显微镜观察了初生聚乙烯粉未,发现毛遂边缘的超分子原纤维状织态结构。用偏光显微镜观察了不同分子量聚乙烯粉末的熔融和冷却结晶过程,生成的球晶随分子量增大而增大。用X-射线衍射、差热分析、倒换气相色谱测定了初生聚乙烯的结晶度随分子量而增大;用X-射线衍射、差热分析及密度梯度法测定经退火或热压制的聚乙烯样品的结晶度均随分子量增大而下降。X-射线衍射测定其晶粒尺寸亦随分子量增大而减小。差热分析和倒换气相色谱测定超高分子量聚乙烯粉末的结晶熔点温度(Tm)要比普通分子量聚乙烯高8-12℃。不同分子量聚乙烯的热形变曲线表明,超高分子量聚乙烯在熔融温度后出现明显的橡胶态。此外,还用差热与热重分析研究了超高分子量聚乙烯的热老化行为。测定了超高分子量聚乙烯的优异抗冲强度和沙浆磨耗量。并用扫描电镜对比观察了常规分子量和超高分子量聚乙烯试样的冲击断面的织态结构。  相似文献   

15.
《Thermochimica Acta》2003,396(1-2):67-73
A method recently proposed for measuring spherulite growth rates (G) using temperature programs, tailored for each polymer, is reviewed. This method, compared to the conventional isothermal procedure, permits to expand the temperature range where spherulite growth rates can be measured. Examples of application of this method are reported, in particular, the spherulite growth rates of isotactic polypropylene (iPP) and poly(l-lactic acid) (PLLA) are analyzed. For iPP, growth rates were obtained from 112 to 148 °C using different cooling rates and a self-nucleation procedure. For PLLA, measurements in both isothermal and non-isothermal conditions allowed to overcome the difficulties due to the very high nucleation density that prevent determination of growth rates at low crystallization temperatures. For this polymer the entire curve of G vs. T was obtained.  相似文献   

16.
The spherulite growth, nucleation-related,K g, parameter values obtained from isothermal data (by DSC or optical microscopy) and two other adjustable parameters (the spherulite growth rate preexponential factor and the Avrami's or Tobin's exponent,n) have been used with Nakamura's and Tobin's modified non-isothermal equations to model the kinetics of polymer non-isothermal crystallization. Malkin's model was also tested, for comparison. It is shown that, for polymers that crystallize on cooling almost entirely at temperatures higher than the maximum growth rate temperature, this Tobin's-like non-isothermal model accurately describes the experimental behaviour with only 2 parameters.  相似文献   

17.
Protein aggregation is implicated in the etiology of numerous neurodegenerative diseases. An understanding of aggregation mechanisms is enhanced by atomic-resolution structural information, of which relatively little is currently available. Lewy bodies, the pathological hallmark of Parkinson's disease, contain large quantities of fibrillar alpha-synuclein (AS). Here we present solid-state NMR spectroscopy studies of dried AS fibrils. The spectra have high resolution and sensitivity, and the site-resolved chemical shifts agree very well with those previously observed for hydrated fibrils. The conserved chemical shifts indicate that bulk water is nonessential to the fibril core structure. Moreover, the sample preparation procedure yields major improvements in spectral sensitivity, without compromising spectral resolution. This advance will greatly assist the atomic-resolution structural analysis of AS fibrils.  相似文献   

18.
Two-dimensional spherulite growth leads to the encirclement of regions of molten polymer in a polymer film. On further crystallization localized volume defects arise, resulting in thin spots in the film. Since this effect lowers the mechanical strength of films, we call these volume defects “weak spots.” A computer program is developed to evaluate the number, size, and shape of such volume defects for athermal, thermal, and mixed modes of primary nucleation of spherulites. It is shown that the total area of weak spots exceeds 10% of the sample area for all types of nucleation studied. The largest weak spots arise in samples crystallized via athermal and mixed nucleation; their size is of the same order as that of an average spherulite. Formation of weak spots is observed in thin films of poly(ethylene oxide) and poly(methylene oxide). The disadvantageous role of weak spots is confirmed by observation of electric breakdown occurring preferentially in weak spots in polypropylene films.  相似文献   

19.
Mechanical stress can strongly influence the capability of a protein to aggregate and the kinetics of aggregation, but there is little insight into the underlying mechanism. Here we study the effect of different mechanical stress conditions on the fibrillation of the peptide hormone glucagon, which forms different fibrils depending on temperature, pH, ionic strength, and concentration. A combination of spectroscopic and microscopic data shows that fibrillar polymorphism can also be induced by mechanical stress. We observed two classes of fibrils: a low-stress and a high-stress class, which differ in their kinetic profiles, secondary structure as well as morphology and that are able to self-propagate in a template-dependent fashion. The bending rigidity of the low-stress fibrils is sensitive to the degree of mechanical perturbation. We propose a fibrillation model, where interfaces play a fundamental role in the switch between the two fibrillar classes. Our work also raises the cautionary note that mechanical perturbation is a potential source of variability in the study of fibrillation mechanisms and fibril structures.  相似文献   

20.
尼龙6/蒙脱土纳米复合材料的等温结晶动力学研究   总被引:29,自引:0,他引:29  
用DSC法研究了熔体插层制备的尼龙6/蒙脱土纳米复合材料的等温结晶行为.结果表明,加入少量的蒙脱土可明显提高尼龙6的结晶速率,降低球晶径向生长的单位面积表面自由能.从Avrami方程和Hofman理论出发,得出蒙脱土纳米粒子的存在可明显改变尼龙6的结晶行为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号