首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
On‐surface degradation of sildenafil (an adequate substrate as it contains assorted functional groups in its structure) promoted by the Fenton (Fe2+/H2O2) and Fenton‐like (Mn+/H2O2; Mn+ = Fe3+, Co2+, Cu2+, Mn2+) systems was investigated by using paper spray ionization mass spectrometry (PS‐MS). The performance of each system was compared by measuring the ratio between the relative intensities of the ions of m/z 475 (protonated sildenafil) and m/z 235 (protonated lidocaine, used as a convenient internal standard and added to the paper just before the PS‐MS analyzes). The results indicated the following order in the rates of such reactions: Fe2+/H2O2 ≫ H2O2 ≫ Cu2+/H2O2 > Mn+/H2O2 (Mn+ = Fe3+, Co2+, Mn2+) ~ Mn+ (Mn+ = Fe2+, Fe3+, Co2+, Cu2+, Mn2). The superior capability of Fe2+/H2O2 in causing the degradation of sildenafil indicates that Fe2+ efficiently decomposes H2O2 to yield hydroxyl radicals, quite reactive species that cause the substrate oxidation. The results also indicate that H2O2 can spontaneously decompose likely to yield hydroxyl radicals, although in a much smaller extension than the Fenton system. This effect, however, is strongly inhibited by the presence of the other cations, ie, Fe3+, Co2+, Cu2+, and Mn2+. A unique oxidation by‐product was detected in the reaction between Fe2+/H2O2 with sildenafil, and a possible structure for it was proposed based on the MS/MS data. The on‐surface reaction of other substrates (trimethoprim and tamoxifen) with the Fenton system was also investigated. In conclusion, PS‐MS shows to be a convenient platform to promptly monitor on‐surface oxidation reactions.  相似文献   

2.
Singlet oxygen is among the reactive oxygen species (ROS) with the shortest life‐times in aqueous media because of its extremely high reactivity. Therefore, designing sensors for detection of 1O2 is perhaps one of the most challenging tasks in the field of molecular probes. Herein, we report a highly selective and sensitive chemiluminescence probe ( SOCL‐CPP ) for the detection of 1O2 in living cells. The probe reacts with 1O2 to form a dioxetane that spontaneously decomposes under physiological conditions through a chemiexcitation pathway to emit green light with extraordinary intensity. SOCL‐CPP demonstrated promising ability to detect and image intracellular 1O2 produced by a photosensitizer in HeLa cells during photodynamic therapy (PDT) mode of action. Our findings make SOCL‐CPP the most effective known chemiluminescence probe for the detection of 1O2. We anticipate that our chemiluminescence probe for 1O2 imaging would be useful in PDT‐related applications and for monitoring 1O2 endogenously generated by cells in response to different stimuli.  相似文献   

3.
《中国化学快报》2023,34(3):107555
Recent studies have proposed that the high-valent iron species (such as FeIVO2+) rather than sulfate radical (SO4??) and hydroxyl radical (?OH) are the main reactive oxidant species (ROS) in Fe(II)/peroxydisulfate (PDS) system with the methyl phenyl sulfoxide (PMSO) as the FeIVO2+ probe. However, many operational factors may interfere with the accuracy of this method, so the contribution of FeIVO2+ calculated by this method is controversial. In this study, the possible effect of Fe(II) concentration, pollutant type, reducing agent, or coexisted anions on FeIVO2+ production and its corresponding contribution to the removal of target pollutants in the Fe(II)/PDS system were investigated in detail, and the intrinsic mechanisms involved were also explored. This study shows that ROS generation is a complex process in the Fe(II)/PDS system, and multiple combinatorial approaches are urgently required to deeply explore the contribution of ROS to the elimination of target contaminants.  相似文献   

4.
Inducing high levels of reactive oxygen species (ROS) inside tumor cells is a cancer therapy method termed chemodynamic therapy (CDT). Relying on delivery of Fenton reaction promoters such as Fe2+, CDT takes advantage of overproduced ROS in the tumor microenvironment. We developed a peptide-H2S donor conjugate, complexed with Fe2+, termed AAN - PTC – Fe2+ . The AAN tripeptide was specifically cleaved by legumain, an enzyme overexpressed in glioma cells, to release carbonyl sulfide (COS). Hydrolysis of COS by carbonic anhydrase formed H2S, an inhibitor of catalase, an enzyme that detoxifies H2O2. Fe2+ and H2S together increased intracellular ROS levels and decreased viability in C6 glioma cells compared with controls lacking either Fe2+, the AAN sequence, or the ability to generate H2S. AAN - PTC – Fe2+ performed better than temezolimide while exhibiting no cytotoxicity toward H9C2 cardiomyocytes. This study provides an H2S-amplified, enzyme-responsive platform for synergistic cancer treatment.  相似文献   

5.
Singlet oxygen (1O2) is the excited state electronic isomer and a reactive form of molecular oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and synthetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective PSs as efficient 1O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a reference for future research in this direction. The aim of this review is to highlight the value in the supramolecular photochemistry approach to tapping the unexploited technological potential within this historic reaction.  相似文献   

6.
Photodynamic inactivation of microorganisms has gained substantial attention due to its unique mode of action, in which pathogens are unable to generate resistance, and due to the fact that it can be applied in a minimally invasive manner. In photodynamic therapy (PDT), a non-toxic photosensitizer (PS) is activated by a specific wavelength of light and generates highly cytotoxic reactive oxygen species (ROS) such as superoxide (O2−, type-I mechanism) or singlet oxygen (1O2*, type-II mechanism). Although it offers many advantages over conventional treatment methods, ROS-mediated microbial killing is often faced with the issues of accessibility, poor selectivity and off-target damage. Thus, several strategies have been employed to develop target-specific antimicrobial PDT (aPDT). This includes conjugation of known PS building-blocks to either non-specific cationic moieties or target-specific antibiotics and antimicrobial peptides, or combining them with targeting nanomaterials. In this review, we summarise these general strategies and related challenges, and highlight recent developments in targeted aPDT.  相似文献   

7.
《中国化学快报》2022,33(11):4792-4797
Heterogeneous transition metal catalysts are indispensable in improving environmental pollution. However, their fabrication is often costly and cumbersome, and they can easily pollute the environment. This study proposed using a natural Gabonese ore (GBO) containing MnxOy and FexOy as catalysts to degrade orange II (OII) via peroxymonosulfate (PMS) activation. The GBO + PMS system exhibited extraordinarily high stability and catalytic activity towards OII elimination (92.2%, 0.0453 min?1). The reactive oxygen species (ROS) generated in the system were identified using radical scavenging tests and electron spin-resonance (ESR) analysis. Singlet oxygen (1O2) represented the dominant reactive species for OII degradation, while the system presented a lower reaction energy barrier and was effective in a broad pH range (2–10). This work also proposed the activation mechanism for the GBO + PMS system and OII degradation pathways. This study revealed a new approach for exploring inexpensive, eco-friendly, efficient, and stable heterogeneous transition metal catalysts.  相似文献   

8.
The photoreaction type I/type II pathways mediated by zinc(II) 2,9,16,23‐tetrakis[4‐(N‐methylpyridyloxy)]phthalocyanine (ZnPPc4+) was studied in Candida albicans cells. This photosensitizer was strongly bound to C. albicans cells at short times. After 30 min irradiation, 5 μM ZnPPc4+ produced ~5 log decrease in cell viability. Different probes were used to detect reactive oxygen species (ROS) in cell suspensions (~106 CFU mL?1). Singlet molecular oxygen, O2(1Δg), was observed by the reaction with 9,10‐dimethylanthracene (DMA) and tetrasodium 2,2‐(anthracene‐9,10‐diyl)bis(methylmalonate) (ABMM), whereas the nitro blue tetrazolium (NBT) method was used to sense superoxide anion radical (). Moreover, the effects produced by an anoxic atmosphere and cell suspensions in D2O, as well as the addition of sodium azide and mannitol as ROS trapping were evaluated in the PDI of C. albicans. These investigation indicates that O2(1Δg) is generated in the cells, although a minor extension other radical species can also be involved in the PDI of C. albicans mediated by ZnPPc4+.  相似文献   

9.
Non‐heme (L)FeIII and (L)FeIII‐O‐FeIII(L) complexes (L=1,1‐di(pyridin‐2‐yl)‐N,N‐bis(pyridin‐2‐ylmethyl)ethan‐1‐amine) underwent reduction under irradiation to the FeII state with concomitant oxidation of methanol to methanal, without the need for a secondary photosensitizer. Spectroscopic and DFT studies support a mechanism in which irradiation results in charge‐transfer excitation of a FeIII?μ‐O?FeIII complex to generate [(L)FeIV=O]2+ (observed transiently during irradiation in acetonitrile), and an equivalent of (L)FeII. Under aerobic conditions, irradiation accelerates reoxidation from the FeII to the FeIII state with O2, thus closing the cycle of methanol oxidation to methanal.  相似文献   

10.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了Zn_xMn_(1-x) Fe_2O_4和Ni_xMn_(1-x)Fe_2O_4立方相中的Zn~(2+)、Ni~(2+)、Mn~(2+)以及Fe~(3+)在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn~(2+)完全占据在8a亚晶格上,Fe~(3+)完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe~(3+)0.09Mn~(2+)0.91)[Fe~(3+)1.91Mn~(2+)0.09]O_4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe~(3+)0.11Mn~(2+)0.89)[Fe~(3+)1.89Mn~(2+)0.11]O_4,均与实验结果符合较好。在锌铁氧体中,室温下Zn~(2+)完全占据在8a亚晶格上,Fe~(3+)完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn~(2+)和Fe~(3+)发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe~(3+)在室温下占据在8a亚晶格上,Ni~(2+)与剩下另一半的Fe~(3+)共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学模型研究了立方相尖晶石结构的Zn_xMn_(1-x)Fe_2O_4、Ni_xMn_(1-x)Fe_2O_4复合体系中阳离子占位行为与热处理温度对占位的影响规律。  相似文献   

11.
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.  相似文献   

12.
A facile approach to assemble catalase-like photosensitizing nanozymes with a self-oxygen-supplying ability was developed. The process involved Fe3+-driven self-assembly of fluorenylmethyloxycarbonyl (Fmoc)-protected amino acids. By adding a zinc(II) phthalocyanine-based photosensitizer (ZnPc) and the hypoxia-inducible factor 1 (HIF-1) inhibitor acriflavine (ACF) during the Fe3+-promoted self-assembly of Fmoc-protected cysteine (Fmoc-Cys), the nanovesicles Fmoc-Cys/Fe@Pc and Fmoc-Cys/Fe@Pc/ACF were prepared, which could be disassembled intracellularly. The released Fe3+ could catalyze the transformation of H2O2 enriched in cancer cells to oxygen efficiently, thereby ameliorating the hypoxic condition and promoting the photosensitizing activity of the released ZnPc. With an additional therapeutic component, Fmoc-Cys/Fe@Pc/ACF exhibited higher in vitro and in vivo photodynamic activities than Fmoc-Cys/Fe@Pc, demonstrating the synergistic effect of ZnPc and ACF.  相似文献   

13.
Pathogen infections and cancer are two major human health problems. Herein, we report the synthesis of an organic salt photosensitizer (PS), called 4TPA-BQ, by a one-step reaction. 4TPA-BQ presents aggregation-induced emission features. Owing to the aggregation-induced reactive oxygen species generated and a sufficiently small ΔEST, 4TPA-BQ shows a satisfactorily high 1O2 generation efficiency of 97.8 %. In vitro and in vivo experiments confirmed that 4TPA-BQ exhibited potent photodynamic antibacterial performance against ampicillin-resistant Escherichia coli with good biocompatibility in a short time (15 minutes). When the incubation duration persisted long enough (12 hours), cancer cells were ablated efficiently, leaving normal cells essentially unaffected. This is the first reported time-dependent fluorescence-guided photodynamic therapy in one individual PS, which achieves ordered and multiple targeting simply by varying the external conditions. 4TPA-BQ reveals new design principles for the implementation of efficient PSs in clinical applications.  相似文献   

14.
Redox‐inactive metal ions are one of the most important co‐factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron‐transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox‐inactive metal ions, [(TMC)FeIII(O2)]+‐Mn + (Mn +=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox‐inactive metal ions (ΔE ), which is determined from the gzz values of EPR spectra of O2.−‐Mn + complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+‐Mn + complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox‐inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+‐Mn + complexes in electron‐transfer, electrophilic, and nucleophilic reactions.  相似文献   

15.
Redox-inactive metal ions are one of the most important co-factors involved in dioxygen activation and formation reactions by metalloenzymes. In this study, we have shown that the logarithm of the rate constants of electron-transfer and C−H bond activation reactions by nonheme iron(III)–peroxo complexes binding redox-inactive metal ions, [(TMC)FeIII(O2)]+-Mn+ (Mn+=Sc3+, Y3+, Lu3+, and La3+), increases linearly with the increase of the Lewis acidity of the redox-inactive metal ions (ΔE), which is determined from the gzz values of EPR spectra of O2.−-Mn+ complexes. In contrast, the logarithm of the rate constants of the [(TMC)FeIII(O2)]+-Mn+ complexes in nucleophilic reactions with aldehydes decreases linearly as the ΔE value increases. Thus, the Lewis acidity of the redox-inactive metal ions bound to the mononuclear nonheme iron(III)–peroxo complex modulates the reactivity of the [(TMC)FeIII(O2)]+-Mn+ complexes in electron-transfer, electrophilic, and nucleophilic reactions.  相似文献   

16.
This study reports the identification of oligomeric alkenylperoxides by electrospray ionization mass spectrometry (ESI‐MS) and tandem mass spectrometry (ESI‐MS2), during the oxidation of oleic, linoleic and linolenic acids with Fenton's (Fe2+/H2O2) and Fe2+/O2 systems. The reactions were followed by ferrous oxidation‐xylenol orange method together with GC‐MS and GC‐FID, allowing to observe that both oxidation systems are different in terms of hydroperoxide evolution, probably due to the presence of different intermediate reactive species: perferryl ion and OH· radical responsible for the decomposition of lipid hydroperoxides and formation of new compounds. The analysis of ESI‐MS in the negative mode, obtained after oxidation of each fatty acid, confirmed the presence of the monomeric oxidation products together with other compounds at high mass region above m/z 550. These new ions were attributed to oligomeric structures, identified by the fragmentation pathways observed in the tandem mass spectra. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
Graphitic carbon nitride (g‐C3N4) has been used as photosensitizer to generate reactive oxygen species (ROS) for photodynamic therapy (PDT). However, its therapeutic efficiency was far from satisfactory. One of the major obstacles was the overexpression of glutathione (GSH) in cancer cells, which could diminish the amount of generated ROS before their arrival at the target site. Herein, we report that the integration of Cu2+ and g‐C3N4 nanosheets (Cu2+–g‐C3N4) led to enhanced light‐triggered ROS generation as well as the depletion of intracellular GSH levels. Consequently, the ROS generated under light irradiation could be consumed less by reduced GSH, and efficiency was improved. Importantly, redox‐active species Cu+–g‐C3N4 could catalyze the reduction of molecular oxygen to the superoxide anion or hydrogen peroxide to the hydroxyl radical, both of which facilitated the generation of ROS. This synergy of improved ROS generation and GSH depletion could enhance the efficiency of PDT for cancer therapy.  相似文献   

18.
57Fe Mössbauer and FT-IR of 60CaO·(40-x)Ga2O3·xFe2O3 glasses revealed that Fe(III)O4 tetrahedra occupy substitutional sites of Ga(III)O4 tetrahedra. The activation energy for crystallizaation (E a) obtained from DTA study decreases distinctly from 8.9 to 4.8 eV with an increase in the Fe2O3 content. In the case of 40CaO·(60-x)Ga2O3·xFe2O3 glasses, a week doublet due to Fe(II)O4 tetrahedra or Fe(III)O6 octahedra was observed in addition to Fe(III)O4 tetrahedra. The E avalue decreases gradually from 7.1 to 5.6 eV with an increasing Fe2O3 content. These results indicate that a large amount of Fe2O3 in the network structure is favorable for the crystallization of calcium gallate glass, since it reduces the chemical bond strength.  相似文献   

19.
Singlet oxygen (1O2) is of special interest in plant stress physiology. Studies focused on internal, chlorophyll‐mediated production are often complemented with the use of artificial 1O2 photosensitizers. Here, we report a comparative study on the effects of Rose Bengal (RB), Methylene Violet (MVI), Neutral Red (NR) and Indigo Carmine (IC). These were infiltrated into tobacco leaves at concentrations generating the same fluxes of 1O2 in solution. Following green light‐induced 1O2 production from these dyes, leaf photosynthesis was characterized by Photosystem (PS) II and PSI electron transport and oxidative damage was monitored as degradation of D1, a PSII core protein. Cellular localizations were identified on the basis of the dyes’ fluorescence using confocal laser scanning microscopy. We found that RB and NR were both localized in chloroplasts but the latter had very little effect, probably due to its pH‐dependent photosensitizing. Both RB and intracellular, nonplastid MVI decreased PSII electron transport, but the effect of RB was stronger than that of MVI and only RB was capable of damaging the D1 protein. Intercellularly localized IC had no significant effect. Our results also suggest caution when using RB as photosensitizer because it affects PSII electron transport.  相似文献   

20.
The generation of a nonheme oxoiron(IV) intermediate, [(cyclam)FeIV(O)(CH3CN)]2+ ( 2 ; cyclam=1,4,8,11‐tetraazacyclotetradecane), is reported in the reactions of [(cyclam)FeII]2+ with aqueous hydrogen peroxide (H2O2) or a soluble iodosylbenzene (sPhIO) as a rare example of an oxoiron(IV) species that shows a preference for epoxidation over allylic oxidation in the oxidation of cyclohexene. Complex 2 is kinetically and catalytically competent to perform the epoxidation of olefins with high stereo‐ and regioselectivity. More importantly, 2 is likely to be the reactive intermediate involved in the catalytic epoxidation of olefins by [(cyclam)FeII]2+ and H2O2. In spite of the predominance of the oxoiron(IV) cores in biology, the present study is a rare example of high‐yield isolation and spectroscopic characterization of a catalytically relevant oxoiron(IV) intermediate in chemical oxidation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号