首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The two-dimensional problem of the current distribution on the surface of permeable electrodes contiguous with a stream of incompressible medium with Hall effect is considered. An electrically conducting medium with the same physical properties as those of the main stream is pumped in (out) through the electrodes.This problem was solved in [1] for one particular case when the electrodes are impermeable. It was established that due to the Hall effect in magnetohydrodynamic channels the current is distributed non-uniformly on the electrodes; for values of the Hall parameter of the order of several units or greater, the current flows into an isotropically conducting medium mainly from a small portion on the edge of the electrode. It was also noted that this phenomenon creates unfavorable conditions for the operation of electrodes in magnetohydrodynamic devices.It is shown in what follows that the current distribution on the electrodes may be controlled, and in particular made more uniform, by injecting an electrically conducting medium.  相似文献   

2.
The flow of a thin viscous conducting liquid film falling along one of the plates of a vertically positioned plane capacitor is studied. The capacitor is connected to an alternating current power supply. It is shown that the presence of the electric field leads to flow destabilization; moreover, the parametric resonance of capillary waves is observed.  相似文献   

3.
The Hall and ion-slip effects on fully developed electrically conducting couple stress fluid flow between vertical parallel plates in the presence of a temperature dependent heat source are investigated. The governing non-linear partial differential equations are transformed into a system of ordinary differential equations using similarity transformations. The resulting equations are then solved using the homotopy analysis method (HAM). The effects of the magnetic parameter, Hall parameter, ion-slip parameter and couple stress fluid parameter on velocity and temperature are discussed and shown graphically.  相似文献   

4.
Critical heat flux in a two-phase thermosyphon is usually dealt with from two different ways in a limitation of liquid flow rate falling along a vertical tube: one is a maximum falling liquid rate due to the envelope method, and the other one due to instability of falling liquid film. The difference between the maximum and instability criteria is first made clear. The CHF in the thermosyphon is shown to be predicted well by the maximum liquid rate due to the maximum criterion better than due to the instability criterion. In addition, the comparison implies that the CHF phenomenon in the thermosyphon is considered to be caused when the falling liquid reaches the maximum value rather than when the instability of the falling liquid on the interface is brought about. Received on 1 December 1997  相似文献   

5.
In this paper, an analysis is made on the unsteady flow of an incompressible electrically conducting viscous fluid bounded by an infinite porous flat plate. The plate executes harmonic oscillations at a frequency n in its own plane. A uniform magnetic field Ho is imposed perpendicular to the direction of the flow. It is found that the solution also exists for blowing at the plate. The temperature distribution is also obtained by taking viscous and Joule dissipation into account. The mean wall temperature θo(O) decreases with the increase in the Hall parameter m. It is found that no temperature distribution exists for the blowing at the plate.  相似文献   

6.
S. Das  B. C. Sarkar  R. N. Jana 《Meccanica》2013,48(6):1387-1398
Effects of Hall current on MHD free convection boundary layer flow of a viscous incompressible electrically conducting fluid past a heated vertical flat plate of finite dimension in the presence of a uniform transverse magnetic field have been studied. An exact solution of the governing equations describing the flow has been obtained. The velocity field, induced magnetic field and bulk temperature distributions in the boundary layer flow have been discussed. It is found that the velocity components increase with an increase in Hall parameter. It is noticed that the induced magnetic field components are radically influenced by the Hall parameter. It is also found that the magnitude of bulk temperature in the x-direction decreases with an increase in either Hall parameter or magnetic parameter. On the other hand, the magnitude of the bulk temperature in the z-direction increases with an increase in Hall parameter whereas it decreases with an increase in magnetic parameter.  相似文献   

7.
In this paper, the steady magnetohydrodynamic (MHD) mixed convection boundary layer flow of an incompressible, viscous and electrically conducting fluid over a stretching vertical flat plate is theoretically investigated with Hall effects taken into account. The governing equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of the magnetic parameter, the Hall parameter and the buoyancy parameter on the velocity profiles, the cross flow velocity profiles and the temperature profiles are presented graphically and discussed. Investigated results indicate that the Hall effect on the temperature is small, and the magnetic field and Hall currents produce opposite effects on the shear stress and the heat transfer at the stretching surface.  相似文献   

8.
An analysis is made of the flow of an incompressible, viscous, electrically conducting fluid in a long channel of rectangular cross section due to a periodic pressure gradient, in the presence of a uniform transverse magnetic field. Exact solutions are obtained and asymptotic forms valid for large Hartmann numbers in the boundary layers parallel to the field are discussed.  相似文献   

9.
This paper treats a liquid-metal flow inside an electrically insulating cylinder with electrically conducting solids above and below the liquid region. There is a uniform axial magnetic field, and there is an electric current through the liquid and both solids. Since the lower liquid-solid interface is concave into the solid and since the liquid is a better electrical conductor than the adjacent solid, the electric current is locally concentrated near the centerline. The return to a uniform current distribution involves a radial electric current which interacts with the axial magnetic field to drive an azimuthal flow. The axial variation of the centrifugal force due to the azimuthal velocity drives a meridional circulation with radial and axial velocities. This problem models the effects of Peltier marking during the vertical Bridgman growth of semiconductor crystals with an externally applied magnetic field, where the meridional circulation due to the Peltier current may produce important mixing in the molten semiconductor. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Peristaltic motion induced by sinusoidal traveling wave of incompressible, electrically conducting Maxwell fluid in the porous walls of a two-dimensional channel through a porous medium has been investigated in the presence of a constant magnetic field. The Hall effect has been taken into account. Modified Darcy??s law has been used in the flow modeling. The fluid entering the flow region through one plate is considered at the same rate as it is leaving through the other plate. The problem is formulated using a perturbation expansion in terms of small amplitude ratio. We have discussed the problem only for free pumping case. This work can be considered as mathematical modeling to the case of gall bladder with stones. Finally, the effects of various parameters of interest are discussed and shown graphically.  相似文献   

11.
Three-dimensional interfacial waves that develop on the free surface of falling liquid films are known to intensify heat and mass transfer. In this context, the present paper studies the effect of electrostatic forces applied to a falling film of dielectric liquid on its three-dimensional nonlinear wave dynamics. Therefore, measurements of the local film thickness using a confocal chromatic imaging method were taken, and the complex wave topology was characterized through photography. The experiments show a complex interaction between the electric field and the hydrodynamics of the falling film, whereby electrostatic forces were found to both increase and decrease wave peak height in different regions of the wave. Additionally, an electrically induced breakup of the three-dimensional wave fronts, which leads to a locally doubled frequency in streamwise direction, is found. The ability to influence the wave topology demonstrated here opens the possibility to optimize heat transfer processes in falling liquid films.  相似文献   

12.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

13.
Spiral wound heat exchanger (SWHE) relying on falling film evaporation and boiling is often used for FLNG. The performance of SWHE can be impacted strongly by the motion of the FLNG caused by the wave and typhoon. The falling film characteristics of SWHE outside circular tube are studied experimentally and numerically by a visualization experimental device based on the high-speed camera and a numerical model based on the dynamic grid. The results show that the wave crest of the liquid film moves to the titled side under offshore conditions. The evolution process of falling film flow pattern outside circular tube with the tilt angle of 9° can be divided into four stages: droplet formation and migration, liquid column formation and migration, liquid column coalescence, liquid sheet formation. A correlation permitting the prediction of the falling film flow pattern outside circular tube and the other one permitting the prediction of the average film thickness of circular tube are developed respectively based on the experimental and numerical data.  相似文献   

14.
The unsteady magnehydrodynamics (MHD) Couette flow of an electrically conducting fluid in a rotating system is investigated by taking the Hall and ion-slip currents into consideration.The derived fundamental equations on the assumption of a small magnetic Reynolds number are solved analytically with the well-known Laplace transform technique.The unified closed-form expressions are obtained for the velocity and the skin friction in the two different cases of the magnetic field being fixed to either the fluid or the moving plate.The effects of various parameters on the velocity and the skin friction are discussed by graphs.The results reveal that the primary and secondary velocities increase with the Hall current.An increase in the ion-slip parameter also leads to an increase in the primary velocity but a decrease in the secondary velocity.It is also shown that the combined effect of the rotation,Hall,and ion-slip parameters determines the contribution of the secondary motion in the fluid flow.  相似文献   

15.
The focus of the present study is to obtain exact solutions for the flow of a viscous hydromagnetic fluid due to the rotation of an infinite disk in the presence of an axial uniform steady magnetic field with the inclusion of Hall current effect. In place of the traditional von Karman's axisymmetric evolution of the flow, the rotational non-axisymmetric stationary conducting flow is taken into consideration here, whose governing equations allow an exact solution to develop bounded everywhere in the normal direction to the wall.The three-dimensional equations of motion are treated analytically yielding derivation of exact solutions, which differ from those of corresponding to the classical von Karman's conducting flow. Making use of this solution, analytical formulas for the angular velocity components, for the current density field as well as for the wall shear stresses are extracted. The critical peripheral locations at which extrema of the local skin friction occur are also determined. It is proved from the analytical results that for the specific flow the properly defined thicknesses decay as the magnetic field strength increases in magnitude, approaching their hydrodynamic value in the limit of large Hall numbers.Interaction of the resolved flow field with the surrounding temperature is further analyzed via the energy equation. The temperature field is shown to accord with the dissipation function. According to the Fourier's heat law, a constant heat transfer from the disk to the fluid occurs, though it increases by the presence of magnetic field, the increase is slowed down by the Hall effect eventually reaching its hydrodynamic limit.  相似文献   

16.
Summary The combined natural- and forced convection flow of a viscous, electrically conducting liquid between parallel electrically conducting walls, in the presence of a transverse magnetic field is analysed. The walls are taken to be at temperatures linearly varying along their lengths. The resulting nonlinear differential equations are solved in terms of even and odd functions depending on the Hartmann number and a modified Rayleigh number, so that solutions for a variety of conditions may be easily computed from their values. The cumulative effect of dissipative and Joule heating are found to be negligible. The Nusselt numbers and viscous drag are found to diminish with increase of the conductivities of the walls.On study leave from Coimbatore Institute of Technology, Coimbatore, India  相似文献   

17.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

18.
Summary The flow of an incompressible, viscous, electrically conducting fluid in a long channel of rectangular cross section due to a periodic pressure gradient, in the presence of a uniform transverse magnetic field is investigated. Exact solutions are obtained and asymptotic forms valid for large Hartmann numbers are discussed.  相似文献   

19.
Theoretical and experimental studies made in recent years show that the plasma flow in the duct of a real MHD generator differs significantly from the quasi-uniform model of the flow in an idealized MHD duct. This difference appears primarily in the analysis of the electrodynamics of the MHD generator. Usually the actual electrical characteristics of the generator are poorer than expected, which may be caused, in particular, by flow nonuniformities and electrical leaks in the duct. The influence of these factors shows up particularly strongly in the presence of the Hall effect.Some qualitative and quantitative estimates of these phenomena have already been made in the literature. The necessity for taking into account the influence of the cold boundary layer on the effective conductance of the plasma in the duct was shown in [1]; in [2] it was shown that this influence increases markedly in the presence of the Hall effect. The influence of shunting of the plasma by the electrically conductive walls of the duct was considered in [3–5].The present paper describes an analysis of the combined influence of the effects associated with flow nonuniformities and electrical leaks for the case of anisotropy of the plasma conductivity, and an example is presented of the calculation of flow in a MHD generator with finite variation of the parameters.  相似文献   

20.
B. Uma  R. Usha 《Nonlinear dynamics》2008,52(1-2):115-128
Weakly nonlinear stability analysis of a falling film with countercurrent gas–liquid flow has been investigated. A normal mode approach and the method of multiple scales are employed to carry out the linear and nonlinear stability solutions for the film flow system. The results show that both supercritical stability and subcritical instability are possible for a film flow system when the gas flows in the countercurrent direction. The stability characteristics of the film flow system are strongly influenced by the effects of interfacial shear stress when the gas flows in the countercurrent direction. The effect of countercurrent gas flow in a falling film is to stabilize the film flow system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号