首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
槽道湍流近壁结构的DPIV观测实验   总被引:1,自引:0,他引:1  
黄湛  申功炘 《力学学报》2006,38(2):236-245
采用DPIV系统(由两台CCD相机组成)对槽道湍流进行速度场时间历程的观测实验,通 过对大量测量结果的综合分析,取得了槽道湍流近壁结构的空间结构及其时间演化过程特征 的结果,可以揭示上扫下掠、湍流瞬时速度型等现象与大尺度涡演化的物理关系,解释若干 湍流大尺度结构的特征机理,还表明DPIV系统提供了一种定量观测湍流的时空结构特征的手 段.  相似文献   

2.
A specially developed stroboscopic instrument has been used to measure the instantaneous velocities in the wall region (including the viscous sublayer) in a turbulent liquid (water) duct flow. Values of the average velocity and the turbulent fluctuations are found as a function of the distance from the wall. The method employed is much simpler than hot-wire anemometry, although somewhat less accurate.The author thanks V. M. Karsten and E. S. Mikhailov for their assistance with the experiments and E. M. Khabakhpashev for his useful advice.  相似文献   

3.
Results are presented of an experimental investigation of the interaction of a subsonic axisymmetric jet, within the initial section, and a flat plate mounted parallel to the jet axis. Relations are obtained for the mean and fluctuating velocities in the wall boundary layer, and the friction stress on the plate is also given.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 77–82, November–December, 1972.  相似文献   

4.
The turbulence structures near a sheared air-water interface were experimentally investigated with the hydrogen bubble visualization technique. Surface shear was imposed by an airflow over the water flow which was kept free from surface waves. Results show that the wind shear has the main influence on coherent structures under air-water interfaces. Low- and high- speed streaks form in the region close to the interface as a result of the imposed shear stress. When a certain airflow velocity is reached, “turbulent spots” appear randomly at low-speed streaks with some characteristics of hairpin vortices. At even higher shear rates, the flow near the interface is dominated primarily by intermittent bursting events. The coherent structures observed near sheared air-water interfaces show qualitative similarities with those occurring in near-wall turbulence. However, a few distinctive phenomena were also observed, including the fluctuating thickness of the instantaneous boundary layer and vertical vortices in bursting processes, which appear to be associated with the characteristics of air-water interfaces. The project supported by the National Natural Science Foundation of China (Grant No.19672070)  相似文献   

5.
Turbulence modifications of a dilute gas-particle flow are experimentally investigated in the lower boundary layer of a horizontal channel by means of a simultaneous two-phase PIV measurement technique. The measurements are conducted in the near-wall region with y +?<?250 at Re τ (based on the wall friction velocity u τ and half channel height h)?=?430. High spatial resolution and small interrogation window are used to minimize the PIV measurement uncertainty due to the velocity gradient near the wall. Polythene beads with the diameter of 60?μm (d p + ?=?1.71, normalized by the fluid kinematic viscosity ν and u τ) are used as dispersed phase, and three low mass loading ratios (Φ m ) ranging from 10?4 to 10?3 are tested. It is found that the addition of the particles noticeably modifies the mean velocity and turbulent intensities of the gas-phase, as well as the turbulence coherent structures, even at Φ m ?=?0.025?%. Particle inertia changes the viscous sublayer of the gas turbulence with a smaller thickness and a larger streamwise velocity gradient, which increases the peak value of the streamwise fluctuation velocity ( $ u_{\text{rms}}^{ + } $ ) of the gas-phase with its location shifting to the wall. Particle sedimentation increases the roughness of the bottom wall, which significantly increases the wall-normal fluctuation velocity ( $ v_{\text{rms}}^{ + } $ ) and Reynolds shear stress ( $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ ) of the gas-phase in the inner region of the boundary layer (y +?<?10). Under effect of particle–wall collision, the Q2 events (ejections) of the gas-phase are slightly increased by particles, while the Q4 events (sweeps) are obviously decreased. The spatial scale of the coherent structures near the wall shrinks remarkably with the presence of the particles, which may be attributed to the intensified crossing-trajectory effects due to particle saltation near the bottom wall. Meanwhile, the $ v_{\text{rms}}^{ + } $ and $ - \langle u^{ \prime } v^{\prime } \rangle^{ + } $ of the gas-phase are significantly reduced in the outer region of the boundary layer (y +?>?20).  相似文献   

6.
In this study, experiments were performed on a two-section porous burner operated on propane and air. The burner consisted of an upstream section of reticulated yttria stabilized zirconia with 23.6 pores per centimeter (ppc) followed by a downstream section of 3.9 ppc, composed of the same material. The velocity and turbulence intensity of the exit flow for reacting and non-reacting conditions were measured. The velocity profiles for both reacting and non-reacting flow were very non-uniform. The turbulence intensity for the reacting flow increased with distance due to turbulence created by the non-uniformities. Blow-off occurred first on one side of the burner, but otherwise the flame in this burner was stable.  相似文献   

7.
 Unsteady turbulent near wake of a rectangular cylinder in channel flow has been studied experimentally with a laser Doppler velocimetry (LDV). The time-averaged and phase-averaged statistics were measured for the cylinders having various width-to-height ratios, b/h. It is shown that the turbulent intensities on the centerline of the channel have their maxima near the rear stagnation point of a recirculation region. The contours of coherent vorticity and streamline reproduce clearly the shed vortices from the cylinder observed by the flow visualization. The characteristics of the flow field, which depends on b/h, are discussed and the significant contribution of the coherent structure to the flow field is clarified. Moreover, the turbulent kinetic energy budget has been examined. Received: 19 January 1998/Accepted: 21 July 1998  相似文献   

8.
A numerical investigation of three-dimensional sinusoidally oscillating flow around a circular cylinder was conducted to examine mushroom-type structures in the near wake that are manifestations of the Honji instability. The focus of this paper is to examine the flow structure through the analysis of the streaklines in the flow. Through the use of streakline visualizations and their correlation with vorticity in the flow field, the onset and development of the mushroom-type structures is followed. The parameter value range is 0.1<KC<2.0 and β=1035, 6815, and 9956. The streakline patterns in several axial planes are examined and used to describe the various mechanisms that sustain the mushroom-type structure during the oscillatory cycle.  相似文献   

9.
The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from 1 to 1.5. Analyzing the auto-power spectrum, self-correlation-function and three dimensional reconstructed phase trajectory, the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.  相似文献   

10.
A method is proposed for calculating turbulent boundary layers near the wall, based on the Reichardt semiempirical model of turbulent mixing. The article considers the problem of the turbulent boundary layer of a plate, including the case of supersonic flow around a plate, as well as the problem of the turbulent boundary layer with the nonisothermal flow of turbulent jets around a surface. Here there are introduced several almost self-similar solutions of the differential transfer equations, based on the assumption of the conservative nature of the profiles of the parameters with respect to a change in the sublayer. The results of the calculation are compared with experimental data.Moscow. Translated from Izvestiya Akademii Nauk SSSR. Mekhanika Zhidkosti i Gaza, No. 2, pp. 15–24, March–April, 1972.  相似文献   

11.
A study of turbulence evolution and spectra within and just outside the core of a trailing vortex is performed. The vortex is generated by a vortex generator consisting of four blades positioned orthogonally to each other with the same angle of attack and placed in a low-speed wind tunnel. A grid is placed upstream of the vortex generator to produce free-stream turbulence, which wraps around and interacts with the columnar vortex. Instantaneous measurements of the three velocity components are obtained using a miniature four-sensor hot-wire probe. The study focuses on the distribution of turbulence energy and Reynolds stress among the different spectral components of the flow at different positions across the vortex core and different axial positions along the tunnel. The effect of background grid turbulence on the spectral energy distribution of the vortex is examined in comparison to the vortex alone.  相似文献   

12.
An experimental measurement was performed using time-resolved particle image velocimetry (TRPIV) to investigate the spatial topological character of coherent structures in wall-bounded turbulence of polymer additive solution. The fully developed near-wall turbulent flow fields with and without polymer additives at the same Reynolds number were measured by TRPIV in a water channel. The comparisons of turbulent statistics confirm that due to viscoelastic structure of long-chain polymers, the wall-normal velocity fluctuation and Reynolds shear stress in the near-wall region are suppressed significantly. Furthermore, it is noted that such a behavior of polymers is closely related to the decease of the motion of the second and forth quadrants, i.e., the ejection and sweep events, in the near-wall region. The spatial topological mode of coherent structures during bursts has been extracted by the new mu-level criteria based on locally averaged velocity structure function. Although the general shapes of coherent structures are unchanged by polymer additives, the fluctuating velocity, velocity gradient, velocity strain rate and vorticity of coherent structures during burst events are suppressed in the polymer additive solution compared with that in water. The results show that due to the polymer additives the occurrence and intensity of coherent structures are suppressed, leading to drag reduction.  相似文献   

13.
14.
An experimental investigation (LDA technique) of coherent structures in the turbulent plane near wake behind a pair of square cylinders in side-by-side arrangement is presented with particular emphasis put on the use of 2D invariant structural measures.  相似文献   

15.
The paper describes an experimental and theoretical study of the deposition of small particles from a turbulent annular-flow with cross-stream temperature variation, focusing on the effects of thermophoresis. Various expressions for the thermophoretic force on a spherical particle are critically discussed. The well-known composite formula of Talbot et al. (1980) does not include the ‘second mechanism of thermophoresis’ and it is concluded that the more recent theoretical approach of Beresnev and Chernyak (1995) is probably more reliable. New experimental measurements of particle deposition from a turbulent flow with cross-stream temperature gradients are then presented. The measurement technique is similar to the method of Liu and Agarwal (1974) but in the test section the aerosol flows vertically downwards in an annular gap between two concentric pipes. By heating the outer pipe and cooling the inner it is possible to establish a substantial, near-constant temperature difference between the two walls and hence a thermophoretic force which varies only with radius. Numerical calculations provide a comparison of theory with experiment. The theory is based on the turbulent deposition models of Young and Leeming (1997) and Slater et al. (2003) modified to include thermophoresis and the annular geometry. The theory of Beresnev and Chernyak gives good agreement with the experimental measurements.  相似文献   

16.
At higher concentration levels, the inner structure of micellar solutions cannot be detected directly by optical means. Nevertheless, the flow behavior of the micellar solutions reflects their micellar structures. Hence, in this study the material behavior of micellar surfactant solutions was investigated by rheometrical means in steady and oscillatory shear flows. The flow behavior of the solutions was found to be strongly dependent on the concentration of the surfactants. At very low concentrations, the surfactant solution shows Newtonian behavior. With increasing concentration, a transition to shear thinning behavior and increasing viscoelasticity was found. The complex material structure is modeled according to the flow behavior by discrete and continuous relaxation time spectra, depending on the concentration. Received: 3 May 2000/Accepted: 18 September 2000  相似文献   

17.
A conventional, small perturbation, stability analysis has been applied to a fully developed turbulent shear flow in a parallel duct with rough walls. This is an attempt to detect the inherent state of flow stability to quasi-regular disturbances emanating from the surface roughness elements. The surface roughness is represented by the usual roughness Reynolds number; it is fed into the analysis through an assumed mean velocity profile valid between the viscous sublayer and the inner (wall) region. An eddy viscosity model is used to secure the equation closure and the final equation for the perturbation amplitude has been solved numerically using the techniques developed for the Orr-Sommerfeld equation.Within the domain of realistic flow conditions, and for a range of surface roughness amplitudes, a local minimum of stability in terms of the longitudinal wave number has been found. However, it is not implied that it is a minimum minomorum, as only a limited range of surface roughnesses has been tried.  相似文献   

18.
In this work, the wall shear stress and the mass transfer coefficient of the gas–liquid two-phase upward slug flow in a vertical pipe are investigated experimentally, using limiting diffusion current probes and digital high-speed video system. In experiments, the instantaneous and averaged characteristics of wall shear stress and mass transfer coefficient are concerned. The experimental results are compared with the numerical results in previous paper of the authors. Both experiment and numerical simulation show that the superficial gas and liquid velocities have an obvious influence on the instantaneous characteristics of the two profiles. The mass transfer coefficient has characteristics similar to the wall shear stress. The instantaneous wall shear stress and mass transfer coefficient profiles have the periodicity of slug flow. The averaged wall shear stress and mass transfer coefficient increase with increased superficial gas velocity. However, there is inconsistency in the variation trends of the averaged wall shear stress and mass transfer coefficient with superficial liquid velocity between experimental result and numerical simulation result, which can be attributed to the difference in flow condition. Moreover, the Taylor bubble length is also another impacting factor. The experimental and numerical results all shows that the product scale can not be damaged directly by the flow movement of slug flow. In fact, the alternative forces and fluctuations with high frequency acting on the pipe wall due to slug flow is the main cause for the slug flow enhanced CO2 corrosion process.  相似文献   

19.
The streamwise velocity components at different vertical heights in wall turbulence were measured. Wavelet transform was used to study the turbulent energy spectra, indicating that the global spectrum results from the weighted average of Fourier spectrum based on wavelet scales. W'avelet transform with more vanishing moments can express the declining of turbulent spectrum. The local wavelet spectrum shows that the physical phenomena such as deformation position in the boundary layer, and the or breakup of eddies are related to the vertical energy-containing eddies exist in a multi-scale form. Moreover, the size of these eddies increases with the measured points moving out of the wall. In the buffer region, the small scale energy-containing eddies with higher frequency are excited. In the outer region, the maximal energy is concentrated in the low-frequency large-scale eddies, and the frequency domain of energy-containing eddies becomes narrower.  相似文献   

20.
An experimental study of gas-liquid slug flow   总被引:6,自引:0,他引:6  
Experimental measurements were carried out for upward gas-liquid slug flow in a 50.8 mm diameter pipe. Parallel conductance wires were used to distinguish the Taylor bubbles and liquid slugs and to determine translation velocities and lengths, an electrochemical probe provided the magnitude and direction of the wall shear stress and a radio-frequency local probe was used for the axial and radial distribution of voidage in the liquid slugs. Data are reported over wide range of flow conditions covering slug flow and into the churn flow pattern. Comparison with the Fernandes model predictions are presented. Numerical simulation of slug flow provided information on the structure of flow in a liquid slug and, in particular, on the process of mixing behind a Taylor bubble.List of symbols D pipe diameter - f Taylor bubble frequency - F Gi (x) gas existence function for i-th liquid slug - g gravitational acceleration - l A distance for the wall shear stress reversal in a liquid slug - l B distance for the wall shear stress reversal in a Taylor bubble region - l LS length of a liquid slug - l TB length of a Taylor bubble - n number of samples in an ensemble - u axial velocity - U M superficial mixture velocity (U SG + USL) - U N translation velocity of the leading Taylor bubble - U NLS average translation velocity of liquid slugs - U NTB average translation velocity of Taylor bubbles - U OT overtaking velocity of the trailing Taylor bubble - U SG superficial gas velocity - U SL superficial liquid velocity - v radial velocity - w (y) velocity profile at the inlet to a liquid slug - x axial coordinate - y radial coordinate - void fraction - LS void fraction in a liquid slug - =l TB /(lTB + lLS) - density - surface tension - shear stress - saturation ratio, = w / g h - ensemble average  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号