首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
One important application of temperature modulated DSC (TMDSC) is the measurement of specific heat of materials. In this paper, a thermal resistance/capacitance (R/C) numerical model is used to analyze the effects of experimental parameters and calibration on the measurement of specific heat in TMDSC under isothermal conditions. The actual TMDSC experiments were conducted with sapphire and pure copper samples, respectively. Both simulation and experiments showed that in TMDSC, the measured sample specific heat is a non-linear function of many factors such as sample mass, the heat transfer properties of the TMDSC instrument, temperature modulation period, the heat capacity difference between calibration material and the test material, but modulation amplitude has very little effect on the results. The typical behavior of a heat flux type TMDSC can be described as a low pass filter in terms of specific heat capacity measurement when the instrument heat transfer properties are taken into account. At least for metallic materials, where the temperature gradient inside the sample can normally be ignored, the sample should be chosen in such a way that its total heat capacity (mass times specific heat) is close to that of the calibration material in order to get a more accurate result. Also, a large modulation period is beneficial to improving the test accuracy.  相似文献   

2.
One important application of temperature modulated DSC (TMDSC) is the measurement of specific heat of materials. When the sample has very good thermal conductivity as in the case of metals, the temperature gradient is not normally an important factor and can be ignored most of the time. However, in the case of materials with poor heat transfer properties, for example, polymers, the thermal conductivity is only in the order of 1/1000 or so of that of metals. This could have a major effect on the test results. In this paper, a round analytical solution is given and a numerical model is used to analyze the effects of thermal diffusivity on temperature distribution inside the test sample and specific heat measurement by TMDSC, PET sample test results are presented to demonstrate the effects of material thermal diffusivity.  相似文献   

3.
Radiative heat transfer could be a significant contribution to the total heat transfer within the highly porous materials. This article reports on the use of a conventional instrument, viz. Fourier transform infrared (FTIR) spectroscopy, for the characterization of radiative heat properties of fiber assemblies with low bulk densities. Experimental measurements on spectral transmission with FTIR were performed on five types of fiber assemblies commonly used for insulating materials. From the measurements, radiative heat conductivity was determined by calculating extinction coefficient using Beer’s Law and applying the diffusion approximation approach. Bulk density, fiber arrangement, and temperature influences to radiative heat transfer were discussed. Results show that radiative heat conductivity decreases with bulk density and that of the random arranged fiber assemblies shows lower radiative heat conductivity than the random ball and parallel arranged fiber assemblies. Radiative heat conductivity is proportional to the cubic temperature. The existing theoretical model was modified by comparing theoretical and experimental radiative heat conductivity results.  相似文献   

4.
Due to dynamic nature of processes taking place during the experiment (chemical reaction and physical processes, heat flow, gas flow, etc.) the results obtained by thermal methods may considerably depend on the conditions used during the experiment. Therefore, whenever the results of thermal analysis are reported, the experimental conditions used should be stated. In this paper we have studied the heat transfer from the furnace to the sample and through the sample during dynamic mechanical analysis measurements. Numerical modelling of the heat transfer was done using an own computer program based on the heat conduction equation, solved numerically applying the finite difference methods. The calculated values of the thermal lag between the furnace and the sample were compared with the values experimentally determined on samples of a composite polymeric energetic material (double-base rocket propellant). Also, the temperature distribution within the sample as a function of the heating rate was analysed using the same numerical model. It was found out that using this model and temperature dependent heat transfer coefficient, experimentally obtained values of the thermal lag between the furnace and the sample can be satisfactory described. It was also shown that even at slow heating rates, such is, e.g. 2 °C min−1, the thermal lag between the furnace and the sample can reach several degrees, while the thermal gradient within 3-mm thick rectangular sample can reach 0.4 °C.  相似文献   

5.
换热器与相变材料的兼容性研究进展   总被引:1,自引:0,他引:1  
相变材料是一类以潜热实现能量存储释放的储能材料,由于其在相变温度附近具有很大的储热密度,相变材料可以被用于建筑控温、太阳能热发电和高温传热蓄热等应用中。 换热器是相变储能设备的重要组成部分,可以将热量在供需两端进行传递和转移,保障需求一方的使用,随着相变材料研究的不断深入及其工程应用的广泛普及,换热器已在众多相变储能项目中发挥了重要的枢纽作用。 为了保证换热器的使用性能,需要对换热器在相变材料中的防腐蚀性进行全面的分析。 本文总结了大量国内外的文献,分析不同成分的相变材料对换热器材料的腐蚀性,为换热器材料的选择提供了参考。  相似文献   

6.
This paper presents the modeling and simulation of the thermal analysis on the hydrogenerator stator winding. The insulation aging is predetermined first by the insulation temperatures that, in turn, are influenced by the environmental conditions and second by the speed increase of the high temperature chemical reaction in materials. By increasing the temperature in the electro-insulated material, many molecules enter in chemical reaction accelerating the insulation aging. The heat transfer is a natural process, caused by inner energy, between bodies with high temperature and bodies with lower temperature. This process can also take place between parts of the same body that have different temperatures. The heat is transmitted by conduction, convection, and radiation. The heat transfer and especially the thermal conduction are a domain in which the finite element method is successfully applied. The thermal conduction problems will be solved by the finite elements method. The analysis of the thermal transfer process was made using the modeling and simulation program with finite elements ANSYS, and the results of the simulations were compared with measurement values. The analyzed stator winding is supplied with high voltage of 11 kV that is used for a high power hydrogenerator. To realize the thermal analysis of the winding stator, the coil will be supplied with 11 kV. The results of the analysis on a prototype model present the thermal transfer in coil–insulation–air system when the coil is hot.  相似文献   

7.
Thermal conductivity measurements using the flash method   总被引:1,自引:0,他引:1  
Thermal diffusivity is the speed with which heat propagates through a material. It has a multitude of direct applications, such as determining heat transfer through brake pads at the moment of contact, etc., but more often it is used to derive thermal conductivity from the fundamental relationship tying it with specific heat capacity and density. Using a new multi-sample configuration system, and testing a reference sample adjacent to the unknown, specific heat capacity can be obtained parallel with thermal diffusivity. Thus, a single test yields thermal diffusivity and thermal conductivity with prior knowledge of density. The method is fast and produces results with high accuracy and very good repeatability. The sample size, 12 to 30 mm diameter and 2 to 5 mm thickness, is easy to handle and is well suited for a broad range of materials, even for composites, often a problem for other methods. Typical data on two polymers, Pyrex glass and Pyroceram 9606 are presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Thermophysical properties of intumescent fire-retardant (IFR) materials are important parameters as input data in modeling the combustion process of IFR materials in a fire. In this paper, the influences of several thermophysical properties on burning behavior of IFR materials are simulated based on a combustion model of IFR materials. Thermophysical properties selected here are thermal conductivity of virgin material and char layer, specific heat capacity of virgin material, density of virgin material, surface emissivity of virgin material and char layer, heat of decomposition, heat of combustion, and intumescent temperature. Predicted heat release rates curves for the IFR material at an incident heat flux of 50 kW m?2 are shown for the varied thermophysical parameters’ values. The results show that these varied parameter values can affect the burning behavior of materials remarkably. A comparison with experimental results demonstrates that the predictions of heat release rates are in reasonably good agreement with the experiment.  相似文献   

9.
Penguins live in the extremely cold Antarctic. Understanding the thermal radiative properties of penguin down may help us to develop super insulating materials. In this study, Fourier transform infrared spectroscopy (FTIR) was applied to measure the thermal radiative properties of penguin down and compare them with those of other fibrous materials. It was found that penguin and duck down are superior to other fibrous materials, such as polyester, Thinsulate and wool, at the same fibre volume fraction, in shielding the radiative heat transmission, largely due to their fine fibre diameter. There is an optimum fibre diameter at which the fibrous materials are at their best in blocking thermal radiation. The fibre diameter of penguin down is very close to this optimum value. The study further found that the relationship between the effective thermal radiative conductivity and fibre fineness may be better fitted with a quadratic curve.  相似文献   

10.
Thermal management has become a critical issue owing to the increasing need for various devices including heat dissipation and adsorption. Recently, the rapid growth of scientific reports is seen to improve thermal management efficiency by developing materials with high transfer coefficient and surface improvement to enhance heat transfer rate. Inspired by nature, constructing superlyophilic interfaces has been proved to be an effective way for thermal management and applied in industry and daily life. Herein, state-of-the-art developments of superlyophilic interfaces assisted thermal management are reported mainly from four perspectives around boiling, evaporation, radiation, and condensation. In particular, we discussed the unique role of superlyophilic interfaces during the heat transfer process, such as increasing bubble detachment rate, superspreading assisted efficient evaporation, directional liquid transfer in textiles during radiative cooling, and so forth. Finally, challenges of thermal management assisted by superlyophilic interfaces toward future applications are presented.  相似文献   

11.
Summary The various techniques and methodologies of thermal conductivity measurement have been conventionally based on the determination of the rate of directional heat flow through a material having a unit temperature differential between its opposing faces. The constancy of this rate depends on the material density, its thermal resistance and the heat flow path itself. The last of these variables contributes most significantly to the true value of steady-state axial and radial heat dissipation depending on the magnitude of transient thermal diffusivity along these directions. The purpose of this paper is to exemplify the above features by defined parameters of heat flow measurement by existing methodologies. No new method is proposed here. Importantly, the relationship between the rate of heat transfer, total heat transferred and thermal conductivity at a given temperature under steady-state conditions for a fixed heat flow path will be illustrated.  相似文献   

12.
In this article, the theoretical heat transfer of flexible multilayer insulation material which can be used in high (<433 K) and low temperature (>123 K) environments has been analyzed. A mathematical model has been developed to describe the heat flux through flexible multilayer insulation material, where the heat transfer consists of thermal radiation, solid spacers and gas heat transfer. The equations for heat transfer model have been solved by iterative method combining with dichotomy method using Matlab. Comparison between the experimental results and the calculated values which are obtained from the model shows that the model is feasible to be applied in practical estimation. The investigation on the flexible multilayer thermal insulation material will present active instruction to improve the performance and accomplish optimum design of the material.  相似文献   

13.
Ultrafast lasers micromachining results depend on both the processing parameters and the material properties. The obtained thermal effects are negligible if a good combination of processing parameters is chosen. However, optimizing the processing parameters leading to the required surface quality on a given material can be quite complex and time consuming. We developed a semi-empirical model to estimate the heat accumulation on a surface as a function of the laser fluence, scanning speed and repetition rate. The simulation results were correlated with experimental ones on different materials, and compared with the transient temperature distributions calculated using an analytical solution to the heat transfer equation. The predictions of the proposed model allow evaluating the heat distribution on the surface, as well as optimizing the ultrafast laser micromachining strategy, yielding negligible thermal damage.  相似文献   

14.
The conventional heating materials of thermal battery have the disadvantages of low combustion rate and less heat release, so it is necessary to develop new heating materials. Al/Ni Reactive Multilayer Foils (RMFs) is an ideal heat source due to its high heat release, fast burning speed and no gas generated during combustion. Al/Ni RMFs were prepared by magnetron sputtering, and the heat transfer process of thermal battery using Al/Ni RMFs as heating material was simulated by the COMSOL MULTIPHYSICS simulation. The Al/Ni RMFs combustion reaction mechanism with different Al/Ni ratios was proposed according to DSC and XRD results. The effects of Al/Ni atomic ratio of RMFs on the melting time of electrolyte were investigated, and the temperature distribution during the activation was obtained, indicating the rapid activation process of the thermal battery.  相似文献   

15.

Radiative cooling passively removes heat from objects via emission of thermal radiation to cold space. Suitable radiative cooling materials absorb infrared light while they avoid solar heating by either reflecting or transmitting solar radiation, depending on the application. Here, we demonstrate a reflective radiative cooler and a transparent radiative cooler solely based on cellulose derivatives manufactured via electrospinning and casting, respectively. By modifying the microstructure of cellulose materials, we control the solar light interaction from highly reflective (>?90%, porous structure) to highly transparent (≈ 90%, homogenous structure). Both cellulose materials show high thermal emissivity and minimal solar absorption, making them suitable for daytime radiative cooling. Used as coatings on silicon samples exposed to sun light at daytime, the reflective and transparent cellulose coolers could passively reduce sample temperatures by up to 15 °C and 5 °C, respectively.

  相似文献   

16.
Low temperature calorimetry has been used not only to obtain heat capacity, entropy, enthalpy and Gibbs free energy, but also to investigate and understand lattice vibrations, metals, superconductivity, electronic and nuclear magnetism, dilute magnetic systems and structural transition involved in material research.  相似文献   

17.
An analysis developed in previous work has been further refined in order to study the effect of heat transfer on the heat capacity and phase angle measurements by TMDSC. In the present model, a temperature gradient within the sample has been taken into account by allowing for heat transfer by thermal conduction within the sample. The influence of the properties of the sensors, the heat transfer conditions between the sensor and sample,and the properties of the sample have been investigated by varying each parameter in turn. The results show that heat capacity measurements are reliable only within a restricted frequency range, for which the experimental conditions are such that the heat transfer phase angle depends linearly on the modulation frequency. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
As examples of studies on thermal characteristics of materials with a nanometer scale two topics are discussed. One is heat capacity and thermal conductivity of small materials at low temperatures. It based upon the recent findings that heat capacity depends on the limited number of the phonon modes in low angular frequency region and the distinct characteristic is the appearance of quantized thermal conductance in heat transfer through a narrow wire with hundreds nm. The other is the thermophysical properties at the ordinary interface. The disordered structure appearing in the interfacial region with a width of a few nm is discussed, which is comparable to the phonon mean free path, should be taken into account to reveal the characteristic thermal behavior at room temperature. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
This article is dedicated to the study of the thermal parameters of composite materials. A nonlinear least‐squares criterion is used on experimental transfer functions to identify the thermal conductivity and the diffusivity of aluminum‐polymer composite materials. The density measurements were achieved to deduce the specific heat and thereafter they were compared to values given by differential scanning calorimetry measurement. The thermal parameters of the composite material polypropylene/aluminum were investigated for the two different types of aluminum filler sizes. The experimental data were compared with several theoretical thermal conductivity prediction models. It was found that both the Agari and Bruggeman models provide a good estimation for thermal conductivity. The experimental values of both thermal conductivity and diffusivity have shown a better heat transport for the composite filled with large particles. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 722–732, 2004  相似文献   

20.
A computerized adiabatic calorimeter for heat capacity measurements in the temperature range 80–400 K has been constructed. The sample cell of the calorimeter, which is about 50 cm3 in internal volume, is equipped with a platinum resistance thermometer and surrounded by an adiabatic shield and a guard shield. Two sets of 6-junction chromel-copel thermocouples are mounted between the cell and the shields to indicate the temperature differences between them. The adiabatic conditions of the cell are automatically controlled by two sets of temperature controller. The reliability of the calorimeter was verified through heat capacity measurements on the standard reference material α-Al2O3. The results agreed well with those of the National Bureau of Standards (NBS): within ±0.2% throughout the whole temperature region. The heat capacities of high-purity graphite and polystyrene were precisely measured in the interval 260–370 K by using the above-mentioned calorimeter. The results were tabulated and plotted and the thermal behavior of the two materials was discussed in detail. Polynomial expressions for calculation of the heat capacities of the two substances are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号