首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tetrahedral cluster [RuCo(3)(CO)(12)](-) reacts with various alkynes, including the new PhCtbd1;CC(O)NHCH(2)Ctbd1;CH (L(1)()), to afford the butterfly clusters [RuCo(3)(CO)(10)(micro(4)-eta(2)-RC(2)R')](-) (1, R = R' = C(O)OMe; 2, R = H, R' = Ph; 3, R = H, R' = MeC=CH(2); 4, R = H, R' = CH(2)OCH(2)Ctbd1;CH; 5, R = H, R' = CH(2)NHC(O)Ctbd1;CPh), in which the ruthenium atom occupies a hinge position and the alkyne is coordinated in a micro(4)-eta(2) fashion. Reaction of the anions 1-3 with [Cu(NCMe)(4)]BF(4) led to selective loss of the 12e fragment Co(CO)(-) to form [RuCo(2)(CO)(9)(micro(3)-eta(2)-RC(2)R')] (6, R = R' = C(O)OMe; 7, R = H, R' = Ph; 8, R = H, R' = MeC=CH(2)). To prepare functionalized RuCo(3) or FeCo(3) clusters that could be subsequently condensed with a silica matrix via the sol-gel method, we reacted [MCo(3)(CO)(12)](-) (M = Ru, Fe) with the alkyne PhCtbd1;CC(O)NH(CH(2))(3)Si(OMe)(3)(L(2)()) and obtained the butterfly clusters [MCo(3)(CO)(10)(micro(4)-eta(2)-PhC(2)C(O)NH(CH(2))(3)Si(OMe)(3))](-) 9 and 10, respectively. Air-stable [RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))](-) (11) was obtained from 1,4-bis(trimethylsilyl)butadiyne and reacted with [Cu(NCMe)(4)]BF(4) to give [RuCo(2)(CO)(9)(micro(3)-eta(2)-HC(2)Ctbd1;CSiMe(3))] (12), owing to partial ligand proto-desilylation, and not the expected [RuCo(2)(CO)(9)(micro(3)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))]. Reaction of 11 with [NO]BF(4) afforded, in addition to 12, [RuCo(3)(CO)(9)(NO)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))] (13) owing to selective CO substitution on a wing-tip cobalt atom with NO. The thermal reaction of 11 with [AuCl(PPh(3))] led to replacement of a CO on Ru by the PPh(3) originating from [AuCl(PPh(3))] and afforded [RuCo(3)(CO)(9)(PPh(3))(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CSiMe(3))](-) (14), also obtained directly by reaction of 11 with one equivalent of PPh(3). Proto-desilylation of 11 using TBAF/THF-H(2)O afforded [RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;CH)](-) (15) which, by Sonogashira coupling with 1,4-diiodobenzene, yielded the dicluster complex [[RuCo(3)(CO)(10)(micro(4)-eta(2)-Me(3)SiC(2)Ctbd1;C)]](2)C(6)H(4)](2)(-) (16). The crystal structures of NEt(4).3a, NEt(4).4a, 6, NEt(4).11b, NEt(4).14, and [N(n-Bu)(4)].15a have been determined by X-ray diffraction. Preliminary results indicate the potential of silica-tethered alkyne mixed-metal clusters, obtained by the sol-gel method, as precursors to bimetallic particles.  相似文献   

2.
The rhenacarborane salt Cs[Re(CO)3(eta5-7,8-C2B9H11)] (1) has been used to synthesize the tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Ph2P(CH2)2PPh2]] (3) where two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments have been shown by X-ray crystallography to be bridged by a single 1,2-bis(diphenylphosphino)ethane ligand. Reaction of 1 with Ag[BF4] in the presence of the ligands bis- or tris(pyrazol-1-yl)methane yields the complexes [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-CH2(C3H3N2-1)2]] (4) or [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-kappa1,kappa2-CH(C3H3N2-1)3]] (5), respectively. From X-ray studies, the former comprises a Re-Ag bond bridged by the carborane cage and with the bis(pyrazol-1-yl)methane coordinating the silver(I) center in an asymmetric kappa(2) mode. Complex 5 was unexpectedly found to contain a tris(pyrazol-1-yl)methane bridging two [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] fragments in a kappa1,kappa2 manner. Treatment of 1 with Ag[BF4] in the presence of 2,2'-dipyridyl and 2,2':6',2' '-terpyridyl yields [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa2-(C5H4N-2)(2)]] (6) and [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3[kappa3-C5H3N(C5H4N-2)2-2,6]] (7). The X-ray structure determination of 7 revealed an unusual pentacoordinated silver(I) center, asymmetrically ligated by a kappa3-2,2':6',2' '-terpyridyl molecule. The same synthetic procedure using N,N,N',N'-tetramethylethylenediamine gave a tetranuclear metal complex [[ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3]2[mu-Me2N(CH2)2NMe2]2] (8) which is believed, in the solid state, to be bridged between the silver atoms by two of the diamine molecules. The salt 1 with Ag[BF4] in the absence of any added ligand gave the tetrameric cluster [ReAg[mu-5,6,10-(H)3-eta5-7,8-C2B9H8](CO)3]4 (9) where, in the solid state, four [ReAg(mu-10-H-eta5-7,8-C2B9H10)(CO)3] units are held together by long interunit B-H right harpoon-up Ag bonds.  相似文献   

3.
The reaction of [Os3Rh(mu-H)3(CO)12] with an excess amount of 4-vinylphenol (as hydride acceptor) in refluxing m-xylene, chlorobenzene or benzene yielded the three new clusters [Os5Rh2(mu-CO){eta6-C6H4(CH3)2}(CO)16] 1, [Os5Rh2(mu-CO)(eta6-C6H5Cl)(CO)16] 2 and [Os5Rh2(mu-CO)(eta6-C6H6)(CO)16] 3. The treatment of [Os3Rh(mu-H)3(CO)12] 4 in refluxing toluene with an excess amount of 4-vinylphenol afforded a new complex, [Os4Rh(mu-H)(eta6-C6H5CH3)(CO)12], which was isolated as a brown complex in 20% yield together with two known compounds, [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] in 10% yield and [Os3Rh4(mu3-eta1:eta1:eta1-C6H5CH3)(CO)13] in 5% yield. Complexes 1-4 were fully characterized by IR, 1H NMR spectroscopy, mass spectroscopy, elemental analysis and X-ray crystallography. The molecular structures of compounds 1-3 are isomorphous, and only differ in the arene-derivatives that attach to the same metal core. Their metal cores can be viewed as a monocapped octahedral, in which an osmium atom caps one of the Os-Os-Os triangular faces of the Os4Rh2 metal framework. Complex 4 has a trigonal-bipyramidal metal core with a C6H5Me ligand that is terminally bound to the Rh atom that lies in the trigonal plane of the metal core. The hydrogenation of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with [Os3(mu-H)2(CO)10] in chloroform under reflux resulted in two hydrogen-rich compounds: [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6, both in moderate yields. The reaction of [Os5Rh2(eta6-C6H5CH3)(mu-CO)(CO)16] with hydrogen in refluxing chloroform yielded a new cluster compound, [Os5Rh(mu-H)5(CO)18] 7, in 20% yield, together with a known osmium-rhodium cluster, [Os6Rh(mu-H)7(mu-CO)(CO)18], as a major compound. Clusters 5, 6, and 7 have been fully characterized by both spectroscopic and crystallographic methods. Additionally, a deuterium-exchange experiment was performed on [Os7Rh3(mu-H)11(CO)23] 5 and [Os5Rh3Cl(mu-H)8(CO)18] 6. Both the compounds proved to be able to exchange the H atom with D in the presence of D2SO4, and the absence of the hydride signal in the 1H NMR spectrum is consistent with this. Therefore, clusters 5 and 6 may serve as appropriate new hydrogen storage models.  相似文献   

4.
The synthesis and reactivity of the thiophyne and furyne clusters [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, O) is reported. Addition of P(C4H3E)3 to [Ru3(CO)10(mu-dppm)] (1) at room temperature in the presence of Me3NO gives simple substitution products [Ru3(CO)9(mu-dppm)(P(C4H3E)3)] (E = S, 2; E = O, 3). Mild thermolysis in the presence of further Me3NO affords the thiophyne and furyne complexes [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 4; E = O, 6) resulting from both carbon-hydrogen and carbon-phosphorus bond activation. In each the C4H2E (E = S, O) ligand donates 4-electrons to the cluster and the rings are tilted with respect to the mu-dppm and the phosphido-bridged open triruthenium unit. Heating 4 at 80 degrees C leads to the formation of the ring-opened cluster [Ru3(CO)5(mu-CO)(mu-dppm)(mu3-eta3-SC4H3)(mu-P(C4H3S)2)] (5) resulting from carbon-sulfur bond scission and carbon-hydrogen bond formation and containing a ring-opened mu3-eta3-1-thia-1,3-butadiene ligand. In contrast, a similar thermolysis of 3 affords the phosphinidene cluster [Ru3(CO)7(mu-dppm)(mu3-eta2-C4H2O)(mu3-P(C4H3O))] (7) resulting from a second phosphorus-carbon bond cleavage and (presumably) elimination of furan. Treatment of 4 and 6 with PPh3 affords the simple phosphine-substituted products [Ru3(CO)6(PPh3)(mu-dppm)(mu3-eta2-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 8; E = O, 9). Both thiophyne and furyne clusters 4 and 6 readily react with hydrogen bromide to give [Ru3(CO)6Br(mu-Br)(mu-dppm)(mu3-eta2-eta1-C4H2E)(mu-P(C4H3E)2)(mu-H)] (E = S, 10; E = O, 11) containing both terminal and bridging bromides. Here the alkynes bind in a highly unsymmetrical manner with one carbon acting as a bridging alkylidene and the second as a terminally bonded Fisher carbene. As far as we are aware, this binding mode has only previously been noted in ynamine complexes or those with metals in different oxidation states. The crystal structures of seven of these new triruthenium clusters have been carried out, allowing a detailed analysis of the relative orientations of coordinated ligands.  相似文献   

5.
The 16-electron half-sandwich complex [Cp*Ir[S2C2(B10H10)]] (Cp* = eta5-C5Me5) (1a) reacts with [[Rh(cod)(mu-Cl)]2] (cod = cycloocta-1,5-diene, C8H12) in different molar ratios to give three products, [[Cp*Ir[S2C2(B10H9)]]Rh(cod)] (2), trans-[[Cp*Ir[S2C2(B10H9)]]Rh[[S2C2(B10H10)]IrCp*]] (3), and [Rh2(cod)2[(mu-SH)(mu-SC)(CH)(B10H10)]] (4). Complex 3 contains an Ir2Rh backbone with two different Ir-Rh bonds (3.003(3) and 2.685(3) angstroms). The dinuclear complex 2 reacts with the mononuclear 16-electron complex 1a to give 3 in refluxing toluene. Reaction of 1a with [W(CO)3(py)3] (py = C5H5N) in the presence of BF3.EtO2 leads to the trinuclear cluster [[Cp*Ir[S2C2(B10H10)]]2W(CO)2] (5) together with [[Cp*Ir(CO)[S2C2(B10H10)]]W(CO)5] (6), and [Cp*Ir(CO)[S2C2(B10H10)]] (7). Analogous reactions of [Cp*Rh[S2C2(B10H10)]] (1 b) with [[Rh(cod)(mu-Cl)]2] were investigated and two complexes cis-[[Cp*Rh[S2C2(B10H10)]]2Rh] (8) and trans-[[Cp*Rh[S2C2(B10H10)]]2Rh] (9) were obtained. In refluxing THF solution, the cisoid 8 is converted in more than 95 % yield to the transoid 9. All new complexes 2-9 were characterized by NMR spectroscopy (1H, 11B NMR) and X-ray diffraction structural analyses are reported for complexes 2-5, 8, and 9.  相似文献   

6.
The photochemical treatment of mu(3)-alkylidyne complexes [[TiCp*(mu-O)](3)(mu(3)-CR)] (R=H (1), Me (2), Cp*=eta(5)-C(5)Me(5)) with the amines (2,6-Me(2)C(6)H(3))NH(2), Et(2)NH, and Ph(2)NH and the imine Ph(2)C=NH leads to the partial hydrogenation of the alkylidyne moiety that is supported on the organometallic oxide, [Ti(3)Cp*O(3)], and the formation of new oxoderivatives [[TiCp*(3)(mu-CHR)(R'NR")] (R"=2,6-Me(2)C(6)H(3), R'=H, R=H (3), Me (4); R'=R"=Et, R=H (5), Me (6); R'=R"=Ph, R=H (7), Me (8)) and [[TiCp*(mu-O)](3)(mu-CHR)(N=CPh(2))] (R=H (9), R=Me (10)), respectively. A sequential transfer hydrogenation process occurs when complex 1 is treated with tBuNH(2), which initially gives the mu-methylene [[TiCp*(mu-O)](3)(mu-CH(2))(HNtBu)] (11) complex and finally, the alkyl derivative [[TiCp*(mu-O)](3)(mu-NtBu)Me] (12). Furthermore, irradiation of solutions of the mu(3)-alkylidyne complexes 1 or 2 in the presence of diamines o-C(6)H(4)(NH(2))(2) and H(2)NCH(2)CH(2)NH(2) (en) affords [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(6)H(4)NH)] (13) and [[TiCp*(mu-O)](3)(mu(3)-eta(2)-NC(2)H(4)NH)] (14) by either methane or ethane elimination, respectively. In the reaction of 1 with en, an intermediate complex [[TiCp*(mu-O)](3)(mu-CH(2))(NHCH(2)CH(2)NH(2))] (15) is detected by (1)H NMR spectroscopy. Thermal treatment of the complexes 4-10 quantitatively regenerates the starting mu(3)-alkylidyne compounds and the amine R'(2)NH or the imine Ph(2)C=NH; however, heating of solutions of 3 or 4 in [D(6)]benzene or a equimolecular mixture of both at 170 degrees C produces methane, ethane, or both, and the complex [[TiCp*(mu-O)](3)[mu(3)-eta(2)-NC(6)H(3)(Me)CH(2)]] (16). The molecular structure of 8 has been established by single-crystal X-ray analysis.  相似文献   

7.
Reaction of [Os(VI)(N)(L(1))(Cl)(OH(2))] (1) with CN(-) under various conditions affords (PPh(4))[Os(VI)(N)(L(1))(CN)(Cl)] (2), (PPh(4))(2)[Os(VI)(N)(L(2))(CN)(2)] (3), and a novel hydrogen cyanamido complex, (PPh(4))(2)[Os(III){N(H)CN}(L(3))(CN)(3)] (4). Compound 4 reacts readily with both electrophiles and nucleophiles. Protonation and methylation of 4 produce (PPh(4))[Os(III)(NCNH(2))(L(3))(CN)(3)] (5) and (PPh(4))[Os(III)(NCNMe(2))(L(3))(CN)(3)] (6), respectively. Nucleophilic addition of NH(3), ethylamine, and diethylamine readily occur at the C atom of the hydrogen cyanamide ligand of 4 to produce osmium guanidine complexes with the general formula [Os(III){N(H)C(NH(2))NR(1)R(2)}(L(3))(CN)(3)](-) , which have been isolated as PPh(4) salts (R(1) = R(2) = H (7); R(1) = H, R(2) = CH(2)CH(3) (8); R(1) = R(2) = CH(2)CH(3) (9)). The molecular structures of 1-5 and 7 and 8 have been determined by X-ray crystallography.  相似文献   

8.
A new series of Te-Ru-Cu carbonyl complexes was prepared by the reaction of K(2)TeO(3) with [Ru(3)(CO)(12)] in MeOH followed by treatment with PPh(4)X (X=Br, Cl) and [Cu(MeCN)(4)]BF(4) or CuX (X=Br, Cl) in MeCN. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was first treated with PPh(4)X followed by the addition of [Cu(MeCN)(4)]BF(4), doubly CuX-bridged Te(2)Ru(4)-based octahedral clusters [PPh(4)](2)[Te(2)Ru(4)(CO)(10)Cu(2)X(2)] (X=Br, [PPh(4)](2)[1]; X=Cl, [PPh(4)](2)[2]) were obtained. When the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)X (X=Br, Cl) followed by the addition of CuX (X=Br, Cl), three different types of CuX-bridged Te-Ru carbonyl clusters were obtained. While the addition of PPh(4)Br or PPh(4)Cl followed by CuBr produced the doubly CuBr-bridged cluster 1, the addition of PPh(4)Cl followed by CuCl led to the formation of the Cu(4)Cl(2)-bridged bis-TeRu(5)-based octahedral cluster compound [PPh(4)](2)[{TeRu(5)(CO)(14)}(2)Cu(4)Cl(2)] ([PPh(4)](2)[3]). On the other hand, when the reaction mixture of K(2)TeO(3) and [Ru(3)(CO)(12)] was treated with PPh(4)Br followed by the addition of CuCl, the Cu(Br)CuCl-bridged Te(2)Ru(4)-based octahedral cluster chain polymer {[PPh(4)](2)(Te(2)Ru(4)(CO)(10)Cu(4)Br(2)Cl(2)).THF}(infinity) ({[PPh(4)](2)[4].THF}(infinity)) was produced. The chain polymer {[PPh(4)](2)[4].THF}(infinity) is the first ternary Te-Ru-Cu cluster and shows semiconducting behavior with a small energy gap of about 0.37 eV. It can be rationalized as resulting from aggregation of doubly CuX-bridged clusters 1 and 2 with two equivalents of CuCl or CuBr, respectively. The nature of clusters 1-4 and the formation and semiconducting properties of the polymer of 4 were further examined by molecular orbital calculations at the B3LYP level of density functional theory.  相似文献   

9.
Chiu TW  Liu YH  Chi KM  Wen YS  Lu KL 《Inorganic chemistry》2005,44(18):6425-6430
Three novel triosmium complexes with unusual coordination characteristics are reported. Treatment of the hydridotriosmium cluster (mu-H)2Os3(CO)10 with CNNPPh3 in CH2Cl2 gave complexes (mu-H)Os3(CO)(10)(mu2-eta2-C(H)NNPPh3) (1) and (mu-H)Os3(CO)10(mu2-eta1-CHPPh3) (2). Complex 1 represents the first example of the existence of a coordinated phosphinazine ligand. An in-situ 1H NMR study showed that the reaction of (mu-H)2Os3(CO)10 with CNNPPh3 produced complex 1 as the initial product in 100% conversion. The latter is not stable in solution and slowly eliminates nitrogen to form an unusual ylide complex 2 in quantitative yield. The thermolysis of 2 in refluxing toluene afforded (mu-H)3Os3(CO)9(mu3-eta1-CCO2CH2Ph) (3) as a colorless compound. Complexes 1-3 were characterized by spectroscopic methods and single-crystal X-ray diffraction analysis. The interesting feature of structure 3 is the presence of a mu3-alkylidyne ligand where the symmetrically triply bridged CCO2CH2Ph fragment lies perpendicular to and above the triosmium triangle.  相似文献   

10.
The reagent Li(2)[7-NMe(3)-nido-7-CB(10)H(10)] reacts with [Mo(CO)(3)(NCMe)(3)] in THF-NCMe (THF = tetrahydrofuran) to give a molybdenacarborane intermediate which, upon oxidation by CH(2)[double bond]CHCH(2)Br or I(2) and then addition of [N(PPh(3))(2)]Cl, gives the salts [N(PPh(3))(2)][2,2,2-(CO)(3)-2-X-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (X = Br (1) or I (2)). During the reaction, the cage-bound NMe(3) substituent is transferred from the cage-carbon atom to an adjacent cage-boron atom, a feature established spectroscopically in 1 and 2, and by X-ray diffraction studies on several of their derivatives. When [Rh(NCMe)(3)(eta(5)-C(5)Me(5))][BF(4)](2) is used as the oxidizing agent, the trimetallic compound [2,2,2-(CO)(3)-7-mu-H-2,7,11-[Rh(2)(mu-CO)(eta(5)-C(5)Me(5))(2)]-closo-2,1-MoCB(10)H(9)] (10) is formed, the NMe(3) group being lost. Reaction of 1 in CH(2)Cl(2) with Tl[PF(6)] in the presence of donor ligands L affords neutral zwitterionic compounds [2,2,2-(CO)(3)-2-L-3-NMe(3)-closo-2,1-MoCB(10)H(10)] for L = PPh(3) (4) or CNBu(t) (5), and [2-Bu(t)C[triple bond]CH-2,2-(CO)(2)-3-NMe(3)-closo-2,1-MoCB(10)H(10)] (6) when L = Bu(t)C[triple bond]CH. When 1 is treated with CNBu(t) and X(2), the metal center is oxidized, and in the products obtained, [2,2,2,2-(CNBu(t))(4)-2-Br-3-X-closo-2,1-MoCB(10)H(10)] (X = Br (7), I (8)), the B-NMe(3) bond is replaced by B-X. In contrast, treatment of 2 with I(2) and cyclo-1,4-S(2)(CH(2))(4) in CH(2)Cl(2) results in oxidative substitution of the cluster and retention of the NMe(3) group, giving [2,2,2-(CO)(3)-2-I-3-NMe(3)-6-[cyclo-1,4-S(2)(CH(2))(4)]-closo-2,1-MoCB(10)H(9)] (9). The unique structural features of the new compounds were confirmed by single-crystal X-ray diffraction studies upon 6, 7, 9 and 10.  相似文献   

11.
Treatment of the organoamido complexes [Rh(2)(mu-4-HNC(6)H(4)Me)(2)(L(2))(2)] (L(2) = 1,5-cyclooctadiene (cod), L = CO) with nBuLi gave solutions of the organoimido species [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(L(2))(2)]. Further reaction of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(cod)(2)] with [Rh(2)(mu-Cl)(2)(cod)(2)] afforded the neutral tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(cod)(4)] (2), which rationalizes the direct syntheses of 2 from [Rh(2)(mu-Cl)(2)(cod)(2)] and Li(2)NC(6)H(4)Me. Reactions of [Li(2)Rh(2)(mu-4-NC(6)H(4)Me)(2)(CO)(4)] with chloro complexes such as [Rh(2)(mu-Cl)(2)(CO)(4)], [MCl(2)(cod)] (M = Pd, Pt), and [Ru(2)(mu-Cl)(2)Cl(2)(p-cymene)(2)] afforded the homo- and heterotrinuclear complexes PPN[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)] (5; PPN=bis(triphenylphosphine)iminium), [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)M(cod)] (M = Pd (6), Pt(7)) and [(CO)(4)Rh(2)(mu-4-NC(6)H(4)Me)(2)Ru(p-cymene)] (8), while the reaction with [AuCl(PPh(3))] gave the tetranuclear compound [(CO)(4)Rh(2)(mu--4-NC(6)H(4)Me)(2)[Au(PPh(3))](2)] (9). The structures of complexes 6, 8, and 9 were determined by X-ray diffraction studies. The anion of 5 reacts with [AuCl(PPh(3))] to give the butterfly cluster [[Rh(3)(mu-4-NC(6)H(4)Me)(2)(CO)(6)]Au(PPh(3))] (10), in which the Au atom is bonded to two rhodium atoms. Reaction of the anion of 5 with [Rh(cod)(NCMe)(2)](BF(4)) gave the tetranuclear complex [Rh(4)(mu-4-NC(6)H(4)Me)(2)(CO)(6)(cod)] (11) in which the Rh(cod) fragment is pi-bonded to one of the arene rings, while the reaction of the anion of 5 with [PdCl(2)(cod)] afforded the heterotrinuclear complex 6 through a metal exchange process.  相似文献   

12.
The hydrothermal reactions of a molybdate source, a nickel(II) salt, tetra-2-pyridylpyrazine (tpyprz), and organodiphosphonic acids H(2)O(3)P(CH(2))(n)()PO(3)H(2) (n = 1-5) of varying tether lengths yielded a series of organic-inorganic hybrid materials of the nickel-molybdophosphonate family. A persistent characteristic of the structural chemistry is the presence of the [Mo(5)O(15)(O(3)PR)(2)](4)(-) cluster as a molecular building block, as noted for the one-dimensional materials [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(4)PO(3)]]x6.65H(2)O (6x6.65H(2)O) and [[Ni(2)(tpyprz)(2)]Mo(5)O(15)[O(3)P(CH(2))(5)PO(3)]]x3.75H(2)O (8x3.75H(2)O), the two-dimensional phases [[Ni(4)(tpyprz)(3)][Mo(5)O(15)(O(3)PCH(2)CH(2)PO(3))](2)]x23H(2)O (3x23H(2)O) and [[Ni(3)(tpyprz)(2)(H(2)O)(2)](Mo(5)O(15))(Mo(2)O(4)F(2))[O(3)P(CH(2))(3)PO(3)](2)]x8H(2)O (5x8H(2)O), and the three-dimensional structures [[Ni(2)(tpyprz)(H(2)O)(3)]Mo(5)O(15)[O(3)P(CH(2))(3)PO(3))]]xH(2)O (4xH(2)O) and [[Ni(2)(tpyprz)(H(2)O)(2)]Mo(5)O(15) [O(3)P(CH(2))(4)PO(3)]]x2.25H(2)O (7x2.25H(2)O). In the case of methylenediphosphonic acid, the inability of this ligand to tether adjacent pentanuclear clusters precludes the formation of the common molybdophosphonate building block, manifesting in contrast a second structural motif, the trinuclear [(Mo(3)O(8))(x)(O(3)PCH(2)PO(3))(y)] subunit of [[Ni(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2) (O(3)PCH(2)PO(3))(2)] (1) which had been previously observed in the corresponding methylenediphosphonate phases of the copper-molybdophosphonate family. Methylenediphosphonic acid also provides a second phase, [Ni(2)(tpyprz)(2)][Mo(7)O(21)(O(3)PCH(2)PO(3))]x3.5H(2)O (9x5H(2)O), which contains a new heptamolybdate cluster [Mo(7)O(21)(O(3)PCH(2)PO(3))](4)(-) and a cationic linear chain [Ni(tpyprz)](n)(4n+) substructure. The structural chemistry of the nickel-molybdophosphonate series contrasts with that of the corresponding copper-molybdophosphonate materials, reflecting in general the different coordination preferences of Ni(II) and Cu(II). Consequently, while the Cu(II)-organic complex building block of the copper family is invariably the binuclear [Cu(2)(tpyprz)](4+) subunit, the Ni(II) chemistry with tpyprz exhibits a distinct tendency toward catenation to provide [Ni(3)(tpyprz)(2)](6+), [Ni(4)(tpyprz)(3)](8+), and [Ni(tpyprz)](n)(4n+) building blocks as well as the common [Ni(2)(tpyprz)](4+) moiety. This results in a distinct structural chemistry for the nickel(II)-molybdophosphonate series with the exception of the methylenediphosphonate derivative 1 which is isostructural with the corresponding copper compound [[Cu(2)(tpyprz)(H(2)O)(2)](Mo(3)O(8))(2)(O(3)PCH(2)PO(3))] (2). The structural chemistry of the nickel(II) series also reflects variability in the number of attachment sites at the molybdophosphonate clusters, in the extent of aqua ligation to the Ni(II) tpyprz subunit, and in the participation of phosphate oxygen atoms as well as molybdate oxo groups in linking to the nickel sites.  相似文献   

13.
The nucleophilicity of the [Pt(2)S(2)] core in [[Ph(2)P(CH(2))(n)PPh(2)]Pt(mu-S)(2)Pt[Ph(2)P(CH(2))(n)PPh(2)]] (n = 3, dppp (1); n = 2, dppe (2)) metalloligands toward the CH(2)Cl(2) solvent has been thoroughly studied. Complex 1, which has been obtained and characterized by X-ray diffraction, is structurally related to 2 and consists of dinuclear molecules with a hinged [Pt(2)S(2)] central ring. The reaction of 1 and 2 with CH(2)Cl(2) has been followed by means of (31)P, (1)H, and (13)C NMR, electrospray ionization mass spectrometry, and X-ray data. Although both reactions proceed at different rates, the first steps are common and lead to a mixture of the corresponding mononuclear complexes [Pt[Ph(2)P(CH(2))(n)PPh(2)](S(2)CH(2))], n = 3 (7), 2 (8), and [Pt[Ph(2)P(CH(2))(n)PPh(2)]Cl(2)], n = 3 (9), 2 (10). Theoretical calculations give support to the proposed pathway for the disintegration process of the [Pt(2)S(2)] ring. Only in the case of 1, the reaction proceeds further yielding [Pt(2)(dppp)(2)[mu-(SCH(2)SCH(2)S)-S,S']]Cl(2) (11). To confirm the sequence of the reactions leading from 1 and 2 to the final products 9 and 11 or 8 and 10, respectively, complexes 7, 8, and 11 have been synthesized and structurally characterized. Additional experiments have allowed elucidation of the reaction mechanism involved from 7 to 11, and thus, the origin of the CH(2) groups that participate in the expansion of the (SCH(2)S)(2-) ligand in 7 to afford the bridging (SCH(2)SCH(2)S)(2-) ligand in 11 has been established. The X-ray structure of 11 is totally unprecedented and consists of a hinged [(dppp)Pt(mu-S)(2)Pt(dppp)] core capped by a CH(2)SCH(2) fragment.  相似文献   

14.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

15.
The nature of the substituents present on the calix-tetrapyrrole tetra-anion ligand [[R2C(C4H2N)]4]4- (R = [-(CH2)5-]0.5, Et) determines the type of reactivity of the corresponding SmII compounds with acetylene. With R = [-(CH2)5-]0.5, dehydrogenation occurred to yield the nearly colorless dinuclear diacetylide complex [[[[-(CH2)5-]4-calix-tetrapyrrole]SmIII]2(mu-C2Li4)].THF as the only detectable reaction product. Conversely, with R = Et, acetylene coupling in addition to dehydrogenation resulted in the formation of a dimeric butatrienediyl enolate derivative [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu-OCH=CH2)]]2(mu,eta2,eta'2-HC=C=C=CH)]. Reaction of the trivalent hydride [(Et8-calix-tetrapyrrole)(thf)SmIII[(mu-H)[Li(thf)]]2 or of the terminally bonded methyl derivative [(Et8-calix-tetrapyrrole)(CH3)SmIII[[Li(thf)]2[Li(thf)2](mu3-Cl)]] with acetylene resulted in a mixture of the carbide [[(Et8-calix-tetrapyrrole)SmIII]2(mu-C2Li4)].Et2O with the dimerization product [[(Et8-calix-tetrapyrrole)SmIII[Li[Li(thf)]2(mu3-OCH=CH2)]]2-mu,eta2,eta'2-HC=C=C=CH)]. The same reaction also yielded a third product, a trivalent complex [[(Et8-calix-tetrapyrrole)SmIII[Li(thf)2]]2], in which the macrocycle was isomerized by shifting the ring attachment of one of the four pyrrole rings.  相似文献   

16.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

17.
Eight-coordinate [MX(4)(L-L)(2)] (M = Zr or Hf; X = Cl or Br; L-L = o-C(6)H(4)(PMe(2))(2) or o-C(6)H(4)(AsMe(2))(2)) were made by displacement of Me(2)S from [MX(4)(Me(2)S)(2)] by three equivalents of L-L in CH(2)Cl(2) solution, or from MX(4) and L-L in anhydrous thf solution. The [MI(4)(L-L)(2)] were made directly from reaction of MI(4) with the ligand in CH(2)Cl(2) solution. The very moisture-sensitive complexes were characterised by IR, UV/Vis, and (1)H and (31)P NMR spectroscopy and microanalysis. Crystal structures of [ZrCl(4)[o-C(6)H(4)(AsMe(2))(2)](2)], [ZrBr(4)[-C(6)H(4)(PMe(2))(2)](2)], [ZrI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] and [HfI(4)[o-C(6)H(4)(AsMe(2))(2)](2)] all show distorted dodecahedral structures. Surprisingly, unlike the corresponding Ti(iv) systems, only the eight-coordinate complex was found in each system. In contrast, the ligand o-C(6)H(4)(PPh(2))(2) forms only six-coordinate complexes [MX(4)[-C(6)H(4)(PPh(2))(2)]] which were fully characterised spectroscopically and analytically. Surprisingly the tripodal triarsine, MeC(CH(2)AsMe(2))(3), also produces eight-coordinate [MX(4)[MeC(CH(2)AsMe(2))(3)](2)] in which the triarsines bind as bidentates in a distorted dodecahedral structure. There is no evidence for seven-coordination as found in some thioether systems.  相似文献   

18.
Reactions between unsaturated [H(2)Os(3)(CO)(9)(PR(3))] clusters (PR(3)= PPh(3), P(4-CF(3)-C(6)H(4))(3), PEt(3)) and 2,4-hexadiyne-1,6-diol have been studied. It was found that the diyne ligand easily reacts with all these complexes to give [HOs(3)(CO)8(PR3)-[mu3, eta1:eta3:eta1)-(CH(3)-C-C=CH-CH=C-O)]] complexes (V, VI and VII, respectively) containing the "Os3C3" pentagonal pyramid cluster framework. This structural pattern is formed through the diyne cyclization, dissociation of a CO ligand and eventual coordination of the cyclized organic moiety to the osmium triangle in the [mu3, eta1:eta3:eta1) manner. In the case of the PEt(3) substituted cluster the second hydride transfer onto the organic fragment occurs to afford the nonhydride [Os(3)(CO)(8)(PR3)[mu3), eta1:eta2:eta1)-(CH(3)-CH-C=CH-CH=C-O)]] cluster, VIII, containing distorted pentagonal pyramid framework with a broken Os-C bond. Heating V, VI of VII and in hexane solutions results in formation of the regioisomers (Va, VIa and VIIa) with the phosphine ligand located at adjacent osmium atoms across the Os-Os bond bridged by the coordinated organic fragment. The most probable mechanism of the isomerization includes reversible phosphine migration between these metal centres. Solid-state structure of V, Va, VI, VIIa and VIII have been established by single crystal X-ray diffraction. A general mechanistic scheme for the diyne ligand cyclization and cluster framework transformations is suggested and discussed.  相似文献   

19.
Four stanna-closo-dodecaborate complexes of ruthenium have been prepared and characterized by multinuclear NMR studies in solution and in the solid state. The solid-state structures of the dimeric zwitterions [[Ru(dppb)(SnB11H11)]2] (2) (dppb = bis(diphenylphosphino)butane), [[Ru(PPh3)2(SnB11H11)]2] (3), and the dianionic ruthenium complex [Bu3MeN]2[Ru(dppb)[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (4) were determined by X-ray crystal structure analysis; they establish an unprecedented structural motif in the chemistry of heteroboranes and transition-metal fragments with the stanna-closo-dodecaborate moiety as a two-faced ligand that exhibits eta1(Sn) as well as eta3(B-H) coordination. The eta3-coordinated stannaborate in 4 and in the isostructural compound [Bu3MeN]2[Ru(PPh3)2[2,7,8-(mu-H)3-exo-SnB11H11](SnB11H11)] (5) shows fluxional behavior, which was studied in detail by using 31P[1H] EXSY and DNMR experiments. The activation parameters for the dynamic process of 5 are given.  相似文献   

20.
The mononuclear complex Fe(CO)(4)(PPh(2)CH(2)CH(2)SH), 1, is isolated as an intermediate in the overall reaction of PPh(2)CH(2)CH(2)SH with [Fe(0)(CO)(4)] sources to produce binuclear bridging thiolate complexes. Photolysis is required for loss of CO and subsequent S-H activation to generate the metal-metal bonded Fe(I)-Fe(I) complex, (mu-SCH(2)CH(2)PPh(2))(2)Fe(2)(CO)(4), 2. Isomeric forms of 2 derive from the apical or basal position of the P-donor ligand in the pseudo square pyramidal S(2)Fe(CO)(2)P coordination spheres. This position in turn is dictated by the stereochemistry of the mu-S-CH(2) bond, designated as syn or anti with respect to the Fe(2)S(2) butterfly core. Addition of strong acids engages the Fe(I)-Fe(I) bond density as a bridging hydride, [(mu-H)-anti-2](+)[SO(3)CF(3)](-) or [(mu-H)-syn-2](+)[SO(3)CF(3)](-), with formal oxidation to Fe(II)-H-Fe(II). Molecular structures of anti-2, syn-2, and [(mu-H)-anti-2](+)[SO(3)CF(3)](-) were determined by X-ray crystallography and show insignificant differences in distance and angle metric parameters, including the Fe-Fe bond distances which average 2.6 A. The lack of coordination sphere rearrangements is consistent with the ease with which deprotonation occurs, even with the weak base, chloride. The Fe(I)-Fe(I) bond, supported by bridging thiolates, therefore presents a site where a proton might be taken up and stored as a hydride without impacting the overall structure of the binuclear complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号