首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The hydrophilic, long-chain diamine PEGda (O,O'-bis(2-aminoethyl)octadeca(ethylene glycol)), when complexed with cis-protected Pt(II) ions afforded water-soluble complexes of the type [Pt(N,N)(PEGda)](NO(3))(2) (N,N = N,N,N',N'-tetramethyl-1,2-diaminoethane (tmeda), 1,2-diaminoethane (en), and 2,2'-bipyridine (2,2'-bipy)) featuring unusual 62-membered chelate rings. Equimolar mixtures containing either the 16-mer duplex DNA D2 or the single-stranded D2a and [Pt(N,N)(PEGda)](2+) were analyzed by negative-ion ESI-MS. Analysis of D2-Pt(II) mixtures showed the formation of 1 : 1 adducts of [Pt(en)(PEGda)](2+), [Pt(tmeda)(PEGda)](2+) and the previously-described metallomacrocycle [Pt(2)(2,2'-bipy)(2){4,4'-bipy(CH(2))(4)4,4'-bipy}(2)](8+) with D2; the dinuclear species bound to D2 most strongly, consistent with its greater charge and aromatic surface area. D2 formed 1 : 2 complexes with the acyclic species [Pt(2,2'-bipy)(Mebipy)(2)](4+) and [Pt(2,2'-bipy)(NH(3))(2)](2+). Analyses of D2a-Pt(II) mixtures gave results similar to those obtained with D2, although fragmentation was more pronounced, indicating that the nucleobases in D2a play more significant roles in mediating the decomposition of complexes than those in D2, in which they are paired in a complementary manner. Investigations were also conducted into the effects of selected platinum(II) complexes on the thermal denaturation of calf thymus DNA (CT-DNA) in buffered solution. Both [Pt(2)(2,2'-bipy)(2){4,4'-bipy(CH(2))(6)4,4'-bipy}(2)](8+) and [Pt(2,2'-bipy)(Mebipy)(2)](4+) stabilized CT-DNA. In contrast, [Pt(tmeda)(PEGda)](2+) and [Pt(en)(PEGda)](2+) (as well as free PEGda) caused negligible changes in melting temperature (ΔT(m)), suggesting that these species interact weakly with CT-DNA.  相似文献   

2.
Reaction of the platinum(III) dimeric complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(NO(3))(2)](NO(3))(2) (1), prepared in situ by the oxidation of the platinum blue complex [Pt(4)(NH(3))(8)((CH(3))(3)CCONH)(4)](NO(3))(5) (2) with Na(2)S(2)O(8), with terminal alkynes CH[triple bond]CR (R = (CH(2))(n)CH(3) (n = 2-5), (CH(2))(n)CH(2)OH (n = 0-2), CH(2)OCH(3), and Ph), in water gave a series of ketonyl-Pt(III) dinuclear complexes [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)COR)](NO(3))(3) (3, R = (CH(2))(2)CH(3); 4, R = (CH(2))(3)CH(3); 5, R = (CH(2))(4)CH(3); 6, R = (CH(2))(5)CH(3); 7, R = CH(2)OH; 8, R = CH(2)CH(2)OH; 9, R = (CH(2))(2)CH(2)OH; 10, R = CH(2)OCH(3); 11, R = Ph). Internal alkyne 2-butyne reacted with 1 to form the complex [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(CH(3))COCH(3))](NO(3))(3) (12). These reactions show that Pt(III) reacts with alkynes to give various ketonyl complexes. Coordination of the triple bond to the Pt(III) atom at the axial position, followed by nucleophilic attack of water and hydrogen shift from the enol to keto form, would be the mechanism. The structures of complexes 3.H(2)O, 7.0.5C(3)H(4)O, 9, 10, and 12 have been confirmed by X-ray diffraction analysis. A competitive reaction between equimolar 1-pentyne and 1-pentene toward 1 produced complex 3 and [Pt(2)(NH(3))(4)((CH(3))(3)CCONH)(2)(CH(2)CH(OH)CH(2)CH(2)CH(3))](NO(3))(3) (14) at a molar ratio of 9:1, suggesting that alkyne is more reactive than alkene. The ketonyl-Pt(III) dinuclear complexes are susceptible to nucleophiles, such as amines, and the reactions with secondary and tertiary amines give the corresponding alpha-amino-substituted ketones and the reduced Pt(II) complex quantitatively. In the reactions with primary amines, the once formed alpha-amino-substituted ketones were further converted to the iminoketones and diimines. The nucleophilic attack at the ketonyl group of the Pt(III) complexes provides a convenient means for the preparation of alpha-aminoketones, alpha-iminoketones, and diimines from the corresponding alkynes and amines.  相似文献   

3.
[Pt(2,2'-bpy)(1-MeC-N3)(2)](NO(3))(2) (1) (2,2'-bpy = 2,2'-bipyridine; 1-MeC = 1-methylcytosine) exists in water in an equilibrium of head-tail and head-head rotamers, with the former exceeding the latter by a factor of ca. 20 at room temperature. Nevertheless, 1 reacts with (en)Pd(II) (en = ethylenediamine) to give preferentially the dinuclear complex [Pt(2,2'-bpy)(1-MeC(-)-N3,N4)(2)Pd(en)](NO(3))(2)·5H(2)O (2) with head-head arranged 1-methylctosinato (1-MeC(-)) ligands and Pd being coordinated to two exocyclic N4H(-) positions. Addition of AgNO(3) to a solution of 2 leads to formation of a pentanuclear chain compound [{Pt(2,2'-bpy)(1-MeC(-))(2)Pd(en)}(2)Ag](NO(3))(5)·14H(2)O (5) in which Ag(+) cross-links two cations of 2 via the four available O2 sites of the 1-MeC(-) ligands. 2 and 5 appear to be the first X-ray structurally characterized examples of di- and multinuclear complexes derived from a Pt(II) species with two cis-positioned cytosinato ligands adopting a head-head arrangement. (tmeda)Pd(II) (tmeda = N,N,N',N'-tetramethylethylenediamine) and (2,2'-bpy)Pd(II) behave differently toward 1 in that in their derivatives the head-tail orientation of the 1-MeC(-) nucleobases is retained. In [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(2,2'-bpy)}(2)](NO(3))(4)·10H(2)O (4), both (2,2'-bpy)Pd(II) entities are pairwise bonded to N4H(-) and O2 sites of the two 1-MeC(-) rings, whereas in [Pt(2,2'-bpy)(1-MeC(-))(2){Pd(tmeda)}(2)(NO(3))](NO(3))(3)·5H(2)O (3) only one of the two (tmeda)Pd(II) units is chelated to N4H(-) and O2. The second (tmeda)Pd(II) is monofunctionally attached to a single N4H(-) site. On the basis of these established binding patterns, ways to the formation of mixed Pt/Pd complexes and possible intermediates are proposed. The methylene protons of the en ligand in 2 are special in that they display two multiplets separated by 0.64 ppm in the (1)H NMR spectrum.  相似文献   

4.
Reductive elimination of methane occurs upon solution thermolysis of kappa(3)-Tp(Me)2Pt(IV)(CH(3))(2)H (1, Tp(Me)2 = hydridotris(3,5-dimethylpyrazolyl)borate). The platinum product of this reaction is determined by the solvent. C-D bond activation occurs after methane elimination in benzene-d(6), to yield kappa(3)-Tp(Me)2Pt(IV)(CH(3))(C(6)D(5))D (2-d(6)), which undergoes a second reductive elimination/oxidative addition reaction to yield isotopically labeled methane and kappa(3)-Tp(Me)2Pt(IV)(C(6)D(5))(2)D (3-d(11)). In contrast, kappa(2)-Tp(Me)2Pt(II)(CH(3))(NCCD(3)) (4) was obtained in the presence of acetonitrile-d(3), after elimination of methane from 1. Reductive elimination of methane from these Pt(IV) complexes follows first-order kinetics, and the observed reaction rates are nearly independent of solvent. Virtually identical activation parameters (DeltaH(++)(obs) = 35.0 +/- 1.1 kcal/mol, DeltaS(++)(obs) = 13 +/- 3 eu) were measured for the reductive elimination of methane from 1 in both benzene-d(6) and toluene-d(8). A lower energy process (DeltaH(++)(scr) = 26 +/- 1 kcal/mol, DeltaS(++)(scr) = 1 +/- 4 eu) scrambles hydrogen atoms of 1 between the methyl and hydride positions, as confirmed by monitoring the equilibration of kappa(3)-Tp(Me)()2Pt(IV)(CH(3))(2)D (1-d(1)()) with its scrambled isotopomer, kappa(3)-Tp(Me)2Pt(IV)(CH(3))(CH(2)D)H (1-d(1'). The sigma-methane complex kappa(2)-Tp(Me)2Pt(II)(CH(3))(CH(4)) is proposed as a common intermediate in both the scrambling and reductive elimination processes. Kinetic results are consistent with rate-determining dissociative loss of methane from this intermediate to produce the coordinatively unsaturated intermediate [Tp(Me)2Pt(II)(CH(3))], which reacts rapidly with solvent. The difference in activation enthalpies for the H/D scrambling and C-H reductive elimination provides a lower limit for the binding enthalpy of methane to [Tp(Me)2Pt(II)(CH(3))] of 9 +/- 2 kcal/mol.  相似文献   

5.
Reaction of 2-(arylazo)phenols (H(2)ap-R; R = OCH(3), CH(3), H, Cl, and NO(2)) with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] affords a family of organometallic complexes of osmium(II) of type [Os(PPh(3))(2)(CO)(ap-R)] where the 2-(arylazo)phenolate ligand is coordinated to the metal center as a tridentate C,N,O-donor. Structure of the [Os(PPh(3))(2)(CO)(ap-H)] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(ap-R)] complexes are diamagnetic and show characteristic (1)H NMR signals and intense MLCT transitions in the visible region. They also show emission in the visible region at ambient temperature. Cyclic voltammetry on the [Os(PPh(3))(2)(CO)(ap-R)] complexes shows a reversible Os(II)-Os(III) oxidation within 0.39-0.73 V vs SCE, followed by a reversible Os(III)-Os(IV) oxidation within 1.06-1.61 V vs SCE. Coulometric oxidation of the [Os(PPh(3))(2)(CO)(ap-R)] complexes generates the [Os(III)(PPh(3))(2)(CO)(ap-R)](+) complexes, which have been isolated as the hexafluorophosphate salts. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes are one-electron paramagnetic and show axial ESR spectra. In solution they behave as 1:1 electrolytes and show intense LMCT transitions in the visible region. The [Os(III)(PPh(3))(2)(CO)(ap-R)]PF(6) complexes have been observed to serve as mild one-electron oxidants in a nonaqueous medium.  相似文献   

6.
Five salts, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)).CH(2)Cl(2), [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O, have been crystallized and examined by single crystal X-ray diffraction. While the internal structure of the cation is similar in all salts, the interactions between cations vary in the different salts. Yellow [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](BPh(4)).CH(3)OH and red [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)](PF(6)) form face-to-face dimers with Pt...Pt separations of 3.6617(6) and 3.340(2) A, respectively. In the latter, hydrogen bonding of the chelating ligand to adjacent anions facilitates the close approach of pairs of cations. The salts [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O, [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Br.3.5H(2)O, and [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.0.1H(2)O form columnar structures with Pt...Pt separations that range from 3.2514(5) to 3.5643(6) A. The water molecules and anions surround these columns and form bridges between neighboring columns. The electronic spectra of aqueous solutions of [(C(4)H(9)N(4))Pt(II)(CNCH(3))(2)]Cl.4H(2)O show spectral changes upon increasing concentrations of the platinum complex that are indicative of the formation of a dimer in solution with an equilibrium constant for dimerization of 23(1).  相似文献   

7.
The first examples of ring-closing metathesis (RCM) reactions of a series of terminal alkene-derived cyclic phosphazenes have been carried out. The tetrakis-, hexakis-, and octakis(allyloxy)cyclophosphazenes (NPPh(2))(NP(OCH(2)CH=CH(2))(2))(2) (1), N(3)P(3)(OCH(2)CH=CH(2))(6) (2), and N(4)P(4)(OCH(2)CH=CH(2))(8) (3) and the tetrakis(allyloxy)-S-phenylthionylphosphazene (NS(O)Ph)[NP(OCH(2)CH=CH(2))(2)](2) (4) were prepared by the reactions of CH(2)=CHCH(2)ONa with the cyclophosphazenes (NPPh(2))(NPCl(2))(2), N(3)P(3)Cl(6), and N(4)P(4)Cl(8) and the S-phenylthionylphosphazene (NS(O)Ph)(NPCl(2))(2). The reactions of 1-4 with Grubbs first-generation olefin metathesis catalyst Cl(2)Ru=CHPh(PCy(3))(2) resulted in the selective formation of seven-membered di-, tri-, and tetraspirocyclic phosphazene compounds (NPPh(2))[NP(OCH(2)CH=CHCH(2)O)](2) (5), N(3)P(3)(OCH(2)CH=CHCH(2)O)(3) (6), and N(4)P(4)(OCH(2)CH=CHCH(2)O)(4) (7) and the dispirocyclic S-phenylthionylphosphazene compound (NS(O)Ph)[NP(OCH(2)CH=CHCH(2)O)](2) (8). X-ray structural studies of 5-8 indicated that the double bond of the spiro-substituted cycloalkene units is in the cis orientation in these compounds. In contrast to the reactions of 1-4, RCM reactions of the homoallyloxy-derived cyclophosphazene and thionylphosphazene (NPPh(2))[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (9) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CH(2))(2)](2) (10) with the same catalyst resulted in the formation of 11-membered diansa compounds NPPh(2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (11) and (NS(O)Ph)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)](2) (13) and the intermolecular doubly bridged ansa-dibino-ansa compounds 12 and 14. The X-ray structural studies of compounds 11 and 13 indicated that the double bonds of the ansa-substituted cycloalkene units are in the trans orientation in these compounds. The geminal bis(homoallyloxy)tetraphenylcyclotriphosphazene [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CH(2))(2)] (15) upon RCM with Grubbs first- and second-generation catalysts gave the spirocyclic product [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)] (16) along with the geminal dibino-substituted dimeric compound [NPPh(2)](2)[NP(OCH(2)CH(2)CH=CHCH(2)CH(2)O)(2)PN][NPPh(2)](2) (17) as the major product. The dibino compound 17, upon reaction with the Grubbs second-generation catalyst, was found to undergo a unique ring-opening metathesis reaction, opening up the bino bridges and partially converting to the spirocyclic compound 16.  相似文献   

8.
The aquapentacyanoferrate(II) ion, [Fe(II)(CN)(5)H(2)O](3-), catalyzes the disproportionation reaction of O-methylhydroxylamine, NH(2)OCH(3), with stoichiometry 3NH(2)OCH(3) → NH(3) + N(2) + 3CH(3)OH. Kinetic and spectroscopic evidence support an initial N coordination of NH(2)OCH(3) to [Fe(II)(CN)(5)H(2)O](3-) followed by a homolytic scission leading to radicals [Fe(II)(CN)(5)(?)NH(2)](3-) (a precursor of Fe(III) centers and bound NH(3)) and free methoxyl, CH(3)O(?), thus establishing a radical path leading to N-methoxyamino ((?)NHOCH(3)) and 1,2-dimethoxyhydrazine, (NHOCH(3))(2). The latter species is moderately stable and proposed to be the precursor of N(2) and most of the generated CH(3)OH. Intermediate [Fe(III)(CN)(5)L](2-) complexes (L = NH(3), H(2)O) form dinuclear cyano-bridged mixed-valent species, affording a catalytic substitution of the L ligands promoted by [Fe(II)(CN)(5)L](3-). Free or bound NH(2)OCH(3) may act as reductants of [Fe(III)(CN)(5)L](2-), thus regenerating active sites. At increasing concentrations of NH(2)OCH(3) a coordinated diazene species emerges, [Fe(II)(CN)(5)N(2)H(2)](3-), which is consumed by the oxidizing CH(3)O(?), giving N(2) and CH(3)OH. Another side reaction forms [Fe(II)(CN)(5)N(O)CH(3)](3-), an intermediate containing the nitrosomethane ligand, which is further oxidized to the nitroprusside ion, [Fe(II)(CN)(5)NO](2-). The latter is a final oxidation product with a significant conversion of the initial [Fe(II)(CN)(5)H(2)O](3-) complex. The side reaction partially blocks the Fe(II)-aqua active site, though complete inhibition is not achieved because the radical path evolves faster than the formation rates of the Fe(II)-NO(+) bonds.  相似文献   

9.
Tantalum complexes [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NMe(2))=CH)py}] (4) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NH(2))=CH)py}] (5), which contain modified alkoxide pincer ligands, were synthesized from the reactions of [TaCp*Me{κ(3)-N,O,O-(OCH(2))(OCH)py}] (Cp* = η(5)-C(5)Me(5)) with HC≡CCH(2)NMe(2) and HC≡CCH(2)NH(2), respectively. The reactions of [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(Ph)=CH)py}] (2) and [TaCp*Me{κ(4)-C,N,O,O-(OCH(2))(OCHC(SiMe(3))=CH)py}] (3) with triflic acid (1:2 molar ratio) rendered the corresponding bis-triflate derivatives [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(Ph)=CH(2))py}] (6) and [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(OCHC(SiMe(3))=CH(2))py}] (7), respectively. Complex 4 reacted with triflic acid in a 1:2 molar ratio to selectively yield the water-soluble cationic complex [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH)py}]OTf (8). Compound 8 reacted with water to afford the hydrolyzed complex [TaCp*(OH)(H(2)O){κ(3)-N,O,O-(OCH(2))(OCHC(CH(2)NHMe(2))=CH(2))py}](OTf)(2) (9). Protonation of compound 8 with triflic acid gave the new tantalum compound [TaCp*(OTf){κ(4)-C,N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH)py}](OTf)(2) (10), which afforded the corresponding protonolysis derivative [TaCp*(OTf)(2){κ(3)-N,O,O-(OCH(2))(HOCHC(CH(2)NHMe(2))=CH(2))py}](OTf) (11) in solution. Complex 8 reacted with CNtBu and potassium 2-isocyanoacetate to give the corresponding iminoacyl derivatives 12 and 13, respectively. The molecular structures of complexes 5, 7, and 10 were established by single-crystal X-ray diffraction studies.  相似文献   

10.
[reaction: see text] 1,3-Dipolar cycloaddition of the cyclic nitrones CH2(CH2)2CH=NO (N1), CH2CH2OCH=NO (N2), CH2-OCH2CH=NO (N3), and O(CH2)2CH=NO (N4) to organonitriles, RCN-both free (R = CH(3), CF(3)) and ligated to Pt(II) and Pt(IV) (in the complexes trans-[PtCl(2)(NCCH(3))(2)] (1) and trans-[PtCl(4)(NCCH(3))(2)] (2))-was investigated extensively by theoretical methods at different levels of theory. The effectiveness of two types of dipolarophile activation (by introducing a strong electron-acceptor group R and by coordination to a metal center) was analyzed and compared. The influence of factors such as the nature of the cyclic nitrone and the nature of the solvent on the reactions was also studied. The reactivity of dipoles and dipolarophiles increases along the series N4 < N1 approximately N3 < N2 and CH(3)CN < CF(3)CN < 1 < 2; the latter demonstrates that the coordination of RCN to a Pt center provides an even higher activation effect upon cycloaddition in comparison with the introduction of a strong electron-acceptor group R such as CF(3). A higher reactivity of the cyclic dipole N1 in comparison with acyclic nitrones (e.g., CH(3)CH=N(CH(3))O) is interpreted to be a result of its exclusive existence in a more strained and hence more reactive E- rather than Z-configuration. The activation and reaction energies have been calculated at different basis sets and levels of theory, up to MP4(SDTQ), CCSD(T), and CBS-Q. The activation energies are weakly sensitive to a change of the correlated methods. The consideration of the solvent effects results in the increase of the activation barriers, and such enhancement is less pronounced for the nonpolar or low polar solvents. The cycloadditions to CH(3)CN and CF(3)CN were found to be nearly synchronous, but these reactions involving 1 and 2 are clearly asynchronous. Moreover, the reaction of N2 with 2 proceeds via a very early acyclic transition state, while for all other reactions the transition states have a cyclic nature.  相似文献   

11.
Bis(pyridine)(9,10-phenanthrenequinone)(9,10-phenanthrenediolato)copper(II), Cu(py)(2)(PhenCat)(PhenBQ), has been prepared by treating copper metal with 9,10-phenanthrenequinone in pyridine solution. In dilute solution, both Cu(py)(2)(PhenCat)(PhenBQ) and the related complex Cu(tmeda)(PhenCat)(PhenBQ) lose PhenBQ to form Cu(II)L(2)(PhenCat), where L(2)= tmeda, 2 py. EPR spectra recorded at temperatures between 300 and 77 K reveal the presence of species with radical and metal localized spins together at equilibrium. Equilibria between Cu(II)L(2)(PhenCat) and Cu(I)L(2)(PhenSQ) redox isomers are solvent dependent, with a shift to higher temperature for polar solvents. Both complexes are oxygen sensitive, reacting with dioxygen to give complexes of diphenic acid. Structural characterization on products obtained with tmeda show that dioxygen insertion across the C-C bond within the chelate ring leads to dimeric products with adjacent Cu(II) ions bridged by diphenate ligands. The addition of O(2) to Cu(tmeda)(PhenCat) in acetonitrile solution at 0 degrees C appears to form a peroxo complex, tentatively identified as Cu(tmeda)(O(2))(PhenQ) on the basis of iodometric titration, as the precursor to the diphenate complex.  相似文献   

12.
The reactions of [N(3)P(3)Cl(6)] with one, two, or three equivalents of the difunctional 1,2-closo-carborane C(2)B(10)H(10)[CH(2)OH](2) and K(2)CO(3) in acetone have been investigated. These reactions led to the new spiro-closo-carboranylphosphazenes gem-[N(3)P(3)Cl(6-2n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (1), 2 (2)) and the first fully carborane-substituted phosphazene gem-[N(3)P(3)[(OCH(2))(2)C(2)B(10)H(10)](3)] (3). A bridged product, non-gem-[N(3)P(3)Cl(4)[(OCH(2))(2)C(2)B(10)H(10)]] (4), was also detected. The reaction of the well-known spiro derivatives [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)] and [N(3)P(3)Cl(4)(O(2)C(12)H(8))] with the same carborane-diol and K(2)CO(3) in acetone gave the new compounds gem-[N(3)P(3)(O(2)C(12)H(8))(3-n)[(OCH(2))(2)C(2)B(10)H(10)](n)] (n=1 (5) or 2 (6), respectively), without signs of intra- or intermolecularly bridged species. Upon treatment with NEt(3) in acetone, compound 5 was converted into the corresponding nido-carboranylphosphazene. However, the reaction of gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5) with NEt(3) in ethanol instead of acetone proceeded in a different manner to give the new compound (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7). For compounds with two 2,2'-dioxybiphenyl units, gem-[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(10)H(10)]] (5), (NHEt(3))[N(3)P(3)(O(2)C(12)H(8))(2)[(OCH(2))(2)C(2)B(9)H(10)]] (8), and (NHEt(3))(2)[N(3)P(3)(O(2)C(12)H(8))(2)(O)[OCH(2)C(2)B(9)H(10)CH(2)OCH(2)CH(3)]] (7), a mixture of different stereoisomers may be expected. However, for 5 and 7 only the meso compounds seem to be formed, with the same (R,S)-configuration as in the precursor [N(3)P(3)Cl(2)(O(2)C(12)H(8))(2)]. The reaction of 5 to give 8 seems to proceed with a change of configuration at one phosphorus center, giving a racemic mixture. The crystal structures of the nido-carboranylphosphazenes 7 and 8 have been confirmed by X-ray diffraction methods.  相似文献   

13.
The synthesis, structural characterization, and bonding situation analysis of a novel, all-zinc, hepta-coordinated palladium complex [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) is reported. The reaction of the substitution labile d(10) metal starting complex [Pd(CH(3))(2)(tmeda)] (tmeda = N,N,N',N'-tetramethyl-ethane-1,2-diamine) with stoichiometric amounts of [Zn(2)Cp*(2)] (Cp* = pentamethylcyclopentadienyl) results in the formation of [Pd(ZnCp*)(4)(ZnMe)(2){Zn(tmeda)}] (1) in 35% yield. Compound 1 has been fully characterized by single-crystal X-ray diffraction, (1)H and (13)C NMR spectroscopy, IR spectroscopy, and liquid injection field desorption ionization mass spectrometry. It consists of an unusual [PdZn(7)] metal core and exhibits a terminal {Zn(tmeda)} unit. The bonding situation of 1 with respect to the properties of the three different types of Zn ligands Zn(R,L) (R = CH(3), Cp*; L = tmeda) bonded to the Pd center was studied by density functional theory quantum chemical calculations. The results of energy decomposition and atoms in molecules analysis clearly point out significant differences according to R vs L. While Zn(CH(3)) and ZnCp* can be viewed as 1e donor Zn(I) ligands, {Zn(tmeda)} is best described as a strong 2e Zn(0) donor ligand. Thus, the 18 valence electron complex 1 nicely fits to the family of metal-rich molecules of the general formula [M(ZnR)(a)(GaR)(b)] (a + 2b = n ≥ 8; M = Mo, Ru, Rh; Ni, Pd, Pt; R = Me, Et, Cp*).  相似文献   

14.
para-Nitrobenzaldehyde semicarbazone (O(2)N(para)-C(6)H(4)C(H)=N-NH-CO-NH(2)) undergoes unprecedented chemical transformation during its reaction with [Os(PPh(3))(2)(CO)(2)(HCOO)(2)] in different alcoholic (R'OH, R' = CH(2)CH(2)OCH(3), CH(2)CH(3), CH(2)CH(2)CH(3), and CH(2)CH(2)CH(2)CH(3)) solvents whereby the NH(2) group of the semicarbazone ligand is displaced by a OR' group provided by the solvents. The transformed semicarbazone ligand binds to osmium as a bidentate N,O-donor forming five-membered chelate ring to afford complexes of type [Os(PPh(3))(2)(CO)(H)(L-OR')], where L-OR' refers to the transformed semicarbazone ligand. Structure of the [Os(PPh(3))(2)(CO)(H)(L-OCH(2)CH(2)OCH(3))] complex has been determined by X-ray crystallography. All the [Os(PPh(3))(2)(CO)(H)(L-OR')] complexes are diamagnetic and show characteristic (1)H NMR signals. They also show intense absorptions in the visible and ultraviolet region. Cyclic voltammetry on the complexes shows an irreversible oxidative response within 0.69-0.88 V versus SCE.  相似文献   

15.
The reaction of the dinuclear species (mu-NH,NH)[Fe(III)(L(IP))(L(AP))](2) dissolved in CH(2)Cl(2) with dioxygen affords black microcrystals of diamagnetic (mu-S,S)[Fe(III)(L(IP))(L(ISQ))](2).n-hexane (6) upon the addition of n-hexane, where (L(IP))(2)(-) represents the dianion of 4,6-di-tert-butyl-2-aminothiophenol, (L(AP))(-) is the corresponding monoanion, and (L(ISQ))(-) is the corresponding o-iminothionebenzosemiquinonate(1-) pi radical monoanion; similarly, the dianion ('H(2)N(2)S(2)')(2)(-) is derived from 1,2-ethanediamine-N,N'-bis(2-benzenethiol), and ('N(2)S(2)(*)')(3)(-) is its monoradical trianion. The above reaction in a CH(2)Cl(2)/CH(3)OH (1:1) mixture yields the diamagnetic isomer (mu-NH,NH)[Fe(III)(L(IP))(L(ISQ))](2).5CH(3)OH (7), whereas air oxidation of (mu-S,S)[Fe(II)('H(2)N(2)S(2)')](2) in CH(3)CN yields diamagnetic (mu-S,S)[Fe(III)('N(2)S(2)(*)')](2) (8). Complexes 6 and 8 were shown to undergo addition reactions with phosphines, phosphites, or cyanide affording the following complexes: trans-[Fe(II)(L(ISQ))(2)(P(OPh)(3))] (9; S(t) = 0) and [N(n-Bu)(4)][Fe(II)(L(ISQ))(2)(CN)] (S(t) = 0). Oxidation of 6 in CH(2)Cl(2) with iodine, bromine, and chlorine respectively yields black microcrystals of [Fe(III)(L(ISQ))(2)X] (X = I, Br, or Cl) with S(t) = (1)/(2). The structures of complexes 6-9 have been determined by X-ray crystallography at 100 K. The oxidation level of the ligands and iron ions in all complexes has been unequivocally established, as indicated by crystallography; electron paramagnetic resonance, UV-vis, and M?ssbauer spectroscopies; and magnetic-susceptibility measurements. The N,S-coordinated o-iminothionebenzosemiquinonate(1-) pi radicals have been identified in all new complexes. The electronic structures of the new complexes have been determined, and it is shown that no evidence for iron oxidation states >III is found in this chemistry.  相似文献   

16.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

17.
A template-directed synthetic approach to halogen-bridged mixed-valence platinum complexes has been performed in organic media using, for instance, a synthetic peptide bearing two bis(ethylenediamine)-based Pt(IV) complexes with two axial bromide anionic ligands, [(Pt(IV)Br2(en))2](RSO3)4, and a [Pt(II)(en)2](RSO3)2 complex (R = (C12H25OCH2)2CHO(CH2)3-).  相似文献   

18.
Among the many mechanisms for the oxidation of guanine derivatives (G) assisted by transition metals, Ru(III) and Pt(IV) metal ions share basically the same principle. Both Ru(III)- and Pt(IV)-bound G have highly positively polarized C8-H's that are susceptible to deprotonation by OH(-), and both undergo two-electron redox reactions. The main difference is that, unlike Pt(IV), Ru(III) is thought to require O(2) to undergo such a reaction. In this study, however, we report that [Ru(III)(NH(3))(5)(dGuo)] (dGuo = deoxyguanosine) yields cyclic-5'-O-C8-dGuo (a two-electron G oxidized product, cyclic-dGuo) without O(2). In the presence of O(2), 8-oxo-dGuo and cyclic-dGuo were observed. Both [Ru(II)(NH(3))(5)(dGuo)] and cyclic-dGuo were produced from [Ru(III)(NH(3))(5)(dGuo)] accelerated by [OH(-)]. We propose that [Ru(III)(NH(3))(5)(dGuo)] disproportionates to [Ru(II)(NH(3))(5)(dGuo)] and [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)], followed by a 5'-OH attack on C8 in [Ru(IV)(NH(3))(4)(NH(2)(-))(dGuo)] to initiate an intramolecular two-electron transfer from dGuo to Ru(IV), generating cyclic-dGuo and Ru(II) without involving O(2).  相似文献   

19.
Heating a suspension of the monomeric hydroxo palladium complex of the type [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, Me(2)bipy, phen or tmeda) in methylketone (acetone or methylisobutylketone) under reflux affords the corresponding ketonyl palladium complex [Pd(N-N)(C(6)F(5))(CH(2)COR)]. On the other hand, the reaction of the hydroxo palladium complexes [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy, phen or tmeda) with diethylmalonate or malononitrile yields the C-bound enolate palladium complexes [Pd(N-N)(CHX(2))(C(6)F(5))](X = CO(2)Et or CN), and the reaction of [Pd(N-N)(C(6)F(5))(OH)](N-N = bipy or phen) with nitromethane gives the nitromethyl palladium complexes [Pd(N-N)(CH(2)NO(2))(C(6)F(5))]. [Pd(tmeda)(C(6)F(5))(OH)] catalyses the cyclotrimerization of malononitrile. The crystal structures of [Pd(bipy)(C(6)F(5))(CH(2)COMe)].1/2Me(2)CO, [Pd(tmeda)(C(6)F(5))[CH(CO(2)Et)(2)]], [Pd(tmeda)(C(6)F(5))[CH(CN)(2)]] and [Pd(tmeda)(C(6)F(5))(CH(2)NO(2))].1/2CH(2)Cl(2) have been established by X-ray diffraction.  相似文献   

20.
A variety of inter- and intramolecular dehydration was found in the reactions of [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)(mu-S(2))](CF(3)SO(3))(4) (1) with hydroxyl substituted alkenes and alkynes. Treatment of 1 with allyl alcohol gave a C(3)S(2) five-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)CH(2)CH(OCH(2)CH=CH(2))S]](CF(3)SO(3))(4) (2), via C-S bond formation after C-H bond activation and intermolecular dehydration. On the other hand, intramolecular dehydration was observed in the reaction of 1 with 3-buten-1-ol giving a C(4)S(2) six-membered ring complex, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2) [mu-SCH(2)CH=CHCH(2)S]](CF(3)SO(3))(4) (3). Complex 1 reacts with 2-propyn-1-ol or 2-butyn-1-ol to give homocoupling products, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCR=CHCH(OCH(2)C triple bond CR)S]](CF(3)SO(3))(4) (4: R = H, 5: R = CH(3)), via intermolecular dehydration. In the reaction with 2-propyn-1-ol, the intermediate complex having a hydroxyl group, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OH)S]](CF(3)SO(3))(4) (6), was isolated, which further reacted with 2-propyn-1-ol and 2-butyn-1-ol to give 4 and a cross-coupling product, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH=CHCH(OCH(2)C triple bond CCH(3))S]](CF(3)SO(3))(4) (7), respectively. The reaction of 1 with diols, (HO)CHRC triple bond CCHR(OH), gave furyl complexes, [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SSC=CROCR=CH]](CF(3)SO(3))(3) (8: R = H, 9: R = CH(3)) via intramolecular elimination of a H(2)O molecule and a H(+). Even though (HO)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OH) does not have any propargylic C-H bond, it also reacts with 1 to give [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)](2)[mu-SCH(2)C(=CH(2))C(=C=C(CH(3))(2))]S](CF(3)SO(3))(4) (10). In addition, the reaction of 1 with (CH(3)O)(H(3)C)(2)CC triple bond CC(CH(3))(2)(OCH(3)) gives [[Ru(P(OCH(3))(3))(2)(CH(3)CN)(2)][mu-S=C(C(CH(3))(2)OCH(3))C=CC(CH(3))CH(2)S][Ru(P(OCH(3))(3))(2)(CH(3)CN)(3)]](CF(3)SO(3))(4) (11), in which one molecule of CH(3)OH is eliminated, and the S-S bond is cleaved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号