首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of two independent methylamine species in microporous aluminophosphate IST-1 (|(CH(3)NH(2))(4)(CH(3)NH(+)(3))(4)(OH(-))(4)|[Al(12)P(12)O(48)]) has been shown previously by synchrotron powder X-ray diffraction. One of these species, [N(1)-C(1)], links to a six-coordinated framework Al-atom [Al(1)], while the other methylamine [N(2)-C(2)] is protonated and hydrogen-bonded to three O-atoms [O(1), O(2) and O(12)]. We revisit the structure of IST-1 and report the complete assignment of the (1)H NMR spectra by combining X-ray data and high-resolution heteronuclear/homonuclear solid-state NMR techniques based on frequency-switched Lee-Goldburg homonuclear decoupling and (31)P-(31)P homonuclear recoupling. Careful analysis of the 2D (1)H-X homonuclear correlation (X=(1)H) and 2D heteronuclear correlation (X=(13)C, (31)P and (27)Al) spectra allowed the distinction of both methylamine species and the assignment of all (31)P and (13)C resonances. For the first time at a relatively high (9.4 T) magnetic field, symmetric doublet patterns have been observed in the (13)C spectra, caused by the influence of the (14)N second-order quadrupolar interaction.  相似文献   

2.
We describe new NMR 2D experiments denoted DECADENCY for DEuterium CArbon DEuterium Nuclear Correlation spectroscopY dedicated to the analysis of anisotropic deuterium spectra. They belong to the class of X-relayed Y,Y-COSY 2D experiments that was initially explored in the case of a (1)H-X-(1)H fragment (I(X)=1/2) in isotropic medium. DECADENCY 2D experiments permit to correlate the quadrupolar doublets associated with two inequivalent deuterium nuclei in an oriented CD(2) fragment through heteronuclear polarization transfers. Two kinds of pulse sequences are described here using either a double INEPT-type or DEPT-type process. DECADENCY 2D experiments provide an interesting alternative to (2)H-(2)H COSY experiments when the geminal (2)H-(2)H total coupling (scalar and dipolar) is null or too small to provide visible cross-correlation peaks. Such a situation is typically observed for geminal deuteriums in prochiral or chiral molecules dissolved in chiral liquid crystals. The efficiency of these techniques is illustrated using dideuterated prochiral molecules, the phenyl[(2)H(2)]methanol and the 1-chloro[1-(2)H(2)]nonane, both dissolved in organic solutions of poly-gamma-benzyl-l-glutamate. The advantages of each sequence are presented and discussed. It is shown that the relative sign of the quadrupolar doublets can be determined.  相似文献   

3.
Two-dimensional (2D) F1-(1)H-coupled HSQC experiments provide 3:1:1:3 and 1:0:1 multiplets for AX(3) and AX(2) spin systems, respectively. These multiplets occur because, in addition to the 2S(y)H(z)(a)-->2S(y)H(z)(a) process, the coherence transfers such as 2S(y)H(z)(a)-->2S(y)H(z)(b) occurring in t(1) period provide detectable magnetization during the t(2) period. Here, we present a 2D F1-(1)H-coupled (1)H-(15)N heteronuclear correlation experiment that provides a 1:3:3:1 quartet for AX(3) spin system and a 1:2:1 triplet for AX(2). The experiment is a derivative of 2D HISQC experiment [J. Iwahara, Y.S. Jung, G.M. Clore, Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation. J. Am. Chem. Soc. 129 (2007) 2971-2980] and contains a scheme that kills anti-phase single-quantum terms generated in the t(1) period. The purge scheme is essential to observe in-phase single-quantum multiplets. Applications to the NH(2) and NH(3)(+) groups in proteins are demonstrated.  相似文献   

4.
《光谱学快报》2013,46(5):437-456
Abstract

The structures of new isomeric 2‐alkoxycarbonylalkylthio‐ and 2‐alkoxy‐ carbonylalkylthio‐1‐alkoxycarbonylalkyl‐6‐aminouracils (121) have been established on the basis of the 1H NMR and 13C NMR spectroscopic data. The 1H NMR and 13C NMR spectra of 121 have been fully assigned by a combination of two‐dimensional experiments [heteronuclear multiple quantum coherence (HMQC) and heteronuclear multiple bond correlation (HMBC)]. The 13C NMR spectra have been shown to be able to differentiate between isomers.  相似文献   

5.
It has been established by means of one-and two-dimensional 1H and 13C NMR Spectroscopy that adenine acyclonucleosides are substituted at either N-9 or N-7 with 2',3'-dihydroxyprop-1-yl (2 and 3) or 2'-hydroxyprop-1-yl (4 and 5) aliphatic chains. The N-3 isomer has not been formed, as claimed previously. This was deduced on the basis of chemical shifts, substituent induced chemical shifts, magnitude and multiplicity of C-H couplings as well as connectivities in 2D homo-and heteronuclear correlation spectra.  相似文献   

6.
1,2-二氢-4-(4-羟基苯基)(2H)二氮杂萘-1-酮的NMR研究   总被引:1,自引:1,他引:0  
应用多种二维核磁共振谱,即:2D同核化学位移全相关谱(TOCSY),2D NOESY谱,2D 异核多量子相关谱(HMQC)和2D异核13C-1H多键 相关谱(HMBC),对化合物1,2-二氢-4-(4-羟基苯基)(2H)二氮杂萘-1-酮的1H和13C NMR 谱线进行了完整归属,从而系统地分析和讨论了该化合物的结构特征.  相似文献   

7.
The effects of multiple-resonance heteronuclear decoupling under magic angle spinning (MAS) on the resolution of one-dimensional 19F and 31P and various two-dimensional MAS NMR spectra and on the residual non-refocusable coherence lifetimes in fluorinated aluminophosphate AlPO4-CJ2, i.e. a compound that contains numerous highly abundant nuclei but no homonuclear spin bath, has been investigated. The design of the four-channel (1H, 19F, 27Al, 31P) MAS probe used for this study is first described. 1H and 1H–27Al double-resonance decouplings allows lengthening the optimized transverse relaxation and increasing the resolution in the 19F and 31P dimensions. Under the application of multi-nuclear decoupling, a two-dimensional 19F–31P CP-HETCOR correlation spectrum for AlPO4-CJ2 is recorded with unprecedented high-resolution in the two dimensions. Moreover, because 1H-decoupling increases the 19F , it has been applied during the entire duration of the 2D NMR experiments, allowing the direct use of residual small interactions to generate 19F–19F and 19F–27Al 2D NMR correlation spectra in AlPO4-CJ2.  相似文献   

8.
Despite success of previous studies, high-resolution solid-state NMR (SSNMR) of paramagnetic systems has been still largely unexplored because of limited sensitivity/resolution and difficulty in assignment due to large paramagnetic shifts. Recently, we demonstrated that an approach using very-fast magic angle spinning (VFMAS; spinning speed 20kHz) enhances resolution/sensitivity in (13)C SSNMR for paramagnetic complexes [Y. Ishii, S. Chimon, N.P. Wickramasinghe, A new approach in 1D and 2D (13)C high resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning, J. Am. Chem. Soc. 125 (2003) 3438-3439]. In this study, we present a new strategy for sensitivity enhancement, signal assignment, and distance measurement in (13)C SSNMR under VFMAS for unlabeled paramagnetic complexes using recoupling-based polarization transfer. As a robust alternative of cross-polarization (CP), rapid application of recoupling-based polarization transfer under VFMAS is proposed. In the present approach, a dipolar-based analog of INEPT (dipolar INEPT) methods is used for polarization transfer and a (13)C signal is observed under VFMAS without (1)H decoupling. The resulting low duty factor permits rapid signal accumulation without probe arcing at recycle times ( approximately 3 ms/scan) matched to short (1)H T(1) values of small paramagnetic systems ( approximately 1 ms). Experiments on Cu(dl-Ala)(2) showed that the fast repetition approach under VFMAS provided sensitivity enhancement by a factor of 8-66 for a given sample, compared with the (13)C MAS spectrum under moderate MAS at 5kHz. The applicability of this approach was also demonstrated for a more challenging system, Mn(acac)(3), for which (13)C and (1)H paramagnetic shift dispersions reach 1500 and 700 ppm, respectively. It was shown that effective-evolution-time dependence of transferred signals in dipolar INEPT permitted one to distinguish (13)CH, (13)CH(2), (13)CH(3), (13)CO2- groups in 1D experiments for Cu(DL-Ala)(2) and Cu(Gly)(2). Applications of this technique to 2D (13)C/(1)H correlation NMR under VFMAS yielded reliable assignments of (1)H resonances as well as (13)C resonances for Cu(DL-Ala)(2) and Mn(acac)(3). Quantitative analysis of cross-peak intensities in 2D (13)C/(1)H correlation NMR spectra of Cu(DL-Ala)(2) provided distance information between non-bonded (13)C-(1)H pairs in the paramagnetic system.  相似文献   

9.
The dynamics of hydration-water in several phospholipid membranes of different compositions is studied by 2D (1)H-(31)P heteronuclear correlation NMR under magic-angle spinning. By using a (1)H T(2) filter before and a (1)H mixing-time after the evolution period and (31)P detection, inter-bilayer water is selectively detected without resonance overlap from bulk water outside the multilamellar vesicles. Moreover the (1)H T(2) relaxation time of the inter-bilayer water is measured. Lipid membranes with labile protons either in the lipid headgroup or in sterols exhibit water-(31)P correlation peaks while membranes free of exchangeable protons do not, indicating that the mechanism for water-lipid correlation is chemical exchange followed by relayed magnetization transfer to (31)P. In the absence of membrane proteins, the inter-bilayer water (1)H T(2)'s are several tens of milliseconds. Incorporation of charged membrane peptides shortened this inter-bilayer water T(2) significantly. This T(2) reduction is attributed to the peptides' exchangeable protons, molecular motion and intermolecular hydrogen bonding, which affect the water dynamics and the chemically relayed magnetization transfer process.  相似文献   

10.
Exclusively heteronuclear 13C-detected NMR spectroscopy of proteins in solution has seen resurgence in the past several years. For disordered or unfolded proteins, which tend to have poor 1H-amide chemical shift dispersion, these experiments offer enhanced resolution and the possibility of complete heteronuclear resonance assignment at the cost of leaving the 1H resonances unassigned. Here we report two novel 13C-detected NMR experiments which incorporate a 1H chemical shift evolution period followed by 13C-TOCSY mixing for aliphatic 1H resonance assignment without reliance on 1H detection.  相似文献   

11.
Total assignment of 13C and 1H NMR spectra of the 5-isopropylsulfonyl-2-norbornenes 2 was achieved using the concerted application of two-dimensional homonuclear and heteronuclear chemical shift correlations. The stereochemistry of both the diastereoisomers endo 2a and exo 2b have been established using the magnitude of the proton coupling constants.  相似文献   

12.
A new general J-HMQC-based technique is presented, which allows an accurate determination of heteronuclear coupling constants. The most important feature of this new approach includes acquisition of the two data sets with and without the additional pi(S)-pulse at the end of coupling evolution period. This enables preservation and separation of the two orthogonal terms of coupling evolution, which are manifested by in- and antiphase cross-peaks, respectively. The coupling magnitudes are evaluated by the nonlinear least-squares fitting of the ratios of integrated signal volumes for both kinds of signals. The effectiveness of the new sequence is demonstrated by determination of the 3J(H3'(i),P(i+1)) couplings in DNA octamer duplex d(GCGTACGC)(2) sample. Additionally, the ability of the new method for the measurement at the natural abundance level of 13C nuclei is presented for the beta-cyclodextrin.  相似文献   

13.
《光谱学快报》2013,46(3):267-277
The bridged ruthenium cluster-polypyridine dimer [Ru3O(CH3COO)6(py)2(tmbpy)Ru(bpy)2(Cl)](PF6)2 (py = pyridine, = 2, 2′-bipyridine and tmbpy = 4, 4′-trimethylenedipyridine) has been synthesized and structurally characterized based on 1H and 13C NMR spectroscopy. This species exhibits a complex pattern of NMR signals due to the presence of a paramagnetic [Ru3O] core and seven non-equivalent aromatic rings. 2D NMR (COSY, HMQC and HMBC) correlation techniques have been required for the total assignment of the 1H and 13C NMR spectra.  相似文献   

14.
A new 2D solid-state CP/MAS13C NMR exchange experiment for through-space isotropic chemical shift correlation is proposed and demonstrated. Through-space correlation is established via a second cross polarization from13C to1H and subsequent1H spin diffusion. A third cross polarization results in the final13C–13C isotropic chemical shift correlation. The1H spin diffusion time is a variable parameter allowing different mean square magnetization displacements to be probed. Experimental results on mixtures of differently13C-labeled alanine and polyethylene indicate that this site-selective 2D technique can be used to characterize domain sizes and proximities over a wide range of length scales (1–200 nm) in solids such as polymers or biological materials.  相似文献   

15.
We discuss a simple approach to enhance sensitivity for (13)C high-resolution solid-state NMR for proteins in microcrystals by reducing (1)H T(1) relaxation times with paramagnetic relaxation reagents. It was shown that (1)H T(1) values can be reduced from 0.4-0.8s to 60-70 ms for ubiquitin and lysozyme in D(2)O in the presence of 10 mM Cu(II)Na(2)EDTA without substantial degradation of the resolution in (13)C CPMAS spectra. Faster signal accumulation using the shorter (1)H T(1) attained by paramagnetic doping provided sensitivity enhancements of 1.4-2.9 for these proteins, reducing the experimental time for a given signal-to-noise ratio by a factor of 2.0-8.4. This approach presented here is likely to be applicable to various other proteins in order to enhance sensitivity in (13)C high-resolution solid-state NMR spectroscopy.  相似文献   

16.
Spin-lattice relaxation of (129)Xe nuclei in solid natural xenon has been investigated in detail over a large range of paramagnetic O(2) impurity concentrations. Direct measurements of the ground state magnetic properties of the O(2) are difficult because the ESR (electron spin resonance) lines of O(2) are rather unstructured, but NMR measurements in the liquid helium temperature region (1.4-4 K) are very sensitive to the effective magnetic moments associated with the spin 1 Zeeman levels of the O(2) molecules and to the O(2) magnetic relaxation. From these measurements, the value of the D[Sz(2)-(1/3)S(2)] spin-Hamiltonian term of the triplet spin ground state of O(2) can be determined. The temperature and magnetic field dependence of the measured paramagnetic O(2)-induced excess line width of the (129)Xe NMR signal agree well with the theoretical model with the spin-Hamiltonian D=0.19 meV (2.3 K), and with the reasonable assumption that the E[S(x)(2)-S(y)(2)] spin-Hamiltonian term is close to 0 meV. An anomalous temperature dependence between 1.4 K and 4.2K of the (129)Xe spin-lattice relaxation rate, T(1n)(-1)(T), is also accounted for by our model. Using an independent determination of the true O(2) concentration in the Xe-O(2) solid, the effective spin lattice relaxation time (which will be seen to be transition dependent) of the O(2) at 2.3 K and 0.96 T is determined to be approximately 1.4 x 10(-8)s. The experimental results, taken together with the relaxation model, suggest routes for bringing highly spin-polarized (129)Xe from the low temperature condensed phase to higher temperatures without excessive depolarization.  相似文献   

17.
Several 13C-1H NMR techniques are derived simplifying the visualisation of enantiomers in chiral ordering solvents. They proceed through various heteronuclear 2D experiments where a bilinear rotation decoupling sequence (BIRD) is inserted in the middle of the t1 evolution period. In this way, the small couplings are refocused while the large couplings are preserved. The methods allow extracting precise values of one-bond carbon-proton residual dipolar couplings for each enantiomer out of unresolved proton-coupled 13C or carbon-coupled 1H spectra. Illustrative examples are analysed and discussed using various pulse sequences.  相似文献   

18.
13C NMR chemical shift assignments were obtained for the Diels-Alder adduct of phencyclone with norbornadiene in CD2Cl2 and in CDCl3 solution. The 13C spectrum at 50.3 MHz, as well as the 1H spectrum at 200.1 MHz, show evidence for hindered rotation of the two unsubstituted bridgehead phenyl rings of the adduct at ambient temperatures. In CD2Cl2 solution, all 19 of the unique 13C nuclei of this molecule give rise to individual 13C resonances. The 1H assignments which were made earlier, together with one-bond and long-range 2D heteronuclear correlation experiments, allowed the assignment of all 13C chemical shifts in the molecule.  相似文献   

19.
A new two-dimensional pulse sequence for T2* measurement of protons directly coupled to 13C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a “building block” into any direct or inverse detecting H,C correlation pulse sequence if proton spin–spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

20.
Improved NMR detection of mass limited samples can be obtained by taking advantage of the mass sensitivity of microcoil NMR, while throughput issues can be addressed using multiple, parallel sample detection coils. We present the design and construction of a double resonance 300-MHz dual volume microcoil NMR probe with thermally etched 440-nL detection volumes and fused silica transfer lines for high-throughput stopped-flow or flow-through sample analysis. Two orthogonal solenoidal detection coils and the novel use of shielded inductors allowed the construction of a probe with negligible radio-frequency cross talk. The probe was resonated at 1H–2D (upper coil) and 1H–13C (lower coil) frequencies such that it could perform 1D and 2D experiments with active locking frequency. The coils exhibited line widths of 0.8–1.1 Hz with good mass sensitivity for both 1H and 13C NMR detection. 13C-directly detected 2D HETCOR spectra of 5% v/v 13C labeled acetic acid were obtained in less than 5 min. Demonstration of the probe characteristics as well as applications of the versatile two-coil double resonance probe are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号