首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel spiroborate esters derived nonracemic 1,2-aminoalcohols and ethylene glycol are reported as highly effective catalysts for the asymmetric borane reduction of a variety of prochiral ketones with borane-dimethyl sulfide complex at room temperature. Optically active alcohols were obtained in excellent chemical yields using 0.1-10 mol % of catalysts with up to 99% ee.  相似文献   

2.
Ferrocenylimidazolium salts with methylene and phenyl groups bridging the ferrocenyl and alkylimidazolium moieties were synthesized and characterized by spectroscopic and analytical methods. Crystal structures of two new compounds are also reported. Cyclic voltammetry was used to analyze the influence of the two bridging groups or spacers on electrochemical properties of the salts relative to the shifts in the formal electrode or peak potentials (E0 or E1/2) of the ferrocene/ferrocenium redox couple. Results from this study showed that all the salts exhibited higher electrode potentials relative to ferrocene, which is due to the electron‐withdrawing effect of the imidazolium ion on the ferrocenyl moiety. Application of the salts as catalysts in transfer hydrogenation of ketones resulted in high conversion of saturated ketones to corresponding alcohols and turnover numbers as high as 1880. The catalysts were chemoselective towards reduction of the C═C bonds of conjugated 3‐penten‐2‐one and 4‐hexen‐3‐one to yield saturated ketones, while unconjugated 5‐hexen‐2‐one was hydrogenated to an unsaturated alcohol. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
A subtle change in the ligand structure, replacing the carbonyl oxygen with sulfur in simple alpha-amino acid amides, resulted in a dramatic activity and selectivity improvement in the rhodium- or ruthenium-catalyzed reduction of ketones under hydrogen transfer conditions. In addition, in most cases, a switch of the product's absolute configuration was observed on going from amides to the corresponding thioamides. Under optimized conditions, we obtained the secondary alcohol products in high yield and enantioselectivity (up to 97% ee) using only 0.25 mol % catalyst loading. [structure: see text]  相似文献   

4.
Primary and secondary alcohols react with vinyl or isopropenyl acetate at room temperature in the presence of catalytic amounts (0.05-1 mol %) of Y5(OiPr)13O to give the corresponding esters. In selected cases, the yttrium catalyst promotes the selective O-acylation of amino alcohols without the formation of the amide. Enol esters also react with alpha-amino acid esters in the absence of a catalyst, at room temperature, to give the corresponding amides.  相似文献   

5.
6.
The calix[4]arene scaffold, blocked in the cone conformation by proper alkylation of the lower rim hydroxyls, was used as a convenient molecular platform for the design of bi- and trimetallic Zn2+ catalysts. The catalytic activity of the Zn2+ complexes of calix[4]arenes decorated at the 1,2-, 1,3-, and 1,2,3-positions of the upper rim with 2,6-bis[(dimethylamino)methyl]pyridine units were investigated in the cleavage of ester 6 and of the RNA model compound HPNP. High rate enhancements, up to 4 orders of magnitude, were observed in a number of catalyst-substrate combinations. Interestingly the order of catalytic efficiency among regioisomeric dinuclear complexes in the cleavage of ester 6 is 1,2-vicinal > 1,3-distal, but it is reversed in the reaction of HPNP. The higher efficiency of trinuclear compared to dinuclear complexes provides an indication of the cooperation of three Zn2+ ions in the catalytic mechanism.  相似文献   

7.
8.
The ability of transition metal catalysts to add or remove hydrogen from organic substrates by transfer hydrogenation is a valuable synthetic tool. Towards a series of novel metal complexes with a P―NH ligand, [Ph2PNHCH2―C4H3O] derived from furfurylamine were synthesized. Reaction of [Ph2PNHCH2―C4H3O] 1 with [Ru(η6p‐cymene)(μ‐Cl)Cl]2, [Ru(η6‐benzene)(μ‐Cl)Cl]2, [Rh(μ‐Cl)(cod)]2 and [Ir(η5‐C5Me5)(μ‐Cl)Cl]2 gave a range of new monodentate complexes [Ru(Ph2PNHCH2―C4H3O)(η6p‐cymene)Cl2] 2 , [Ru(Ph2PNHCH2―C4H3O)(η6‐benzene)Cl2] 3 , [Rh(Ph2PNHCH2‐C4H3O)(cod)Cl] 4 , and [Ir(Ph2PNHCH2‐C4H30)(η5‐C5Me5)Cl2] 5 , respectively. All new complexes were fully characterized by analytical and spectroscopic methods. 31P‐{1H} NMR, distortionless enhancement by polarization transfer (DEPT) or 1H‐13C heteronuclear correlation (HETCOR) experiments were used to confirm the spectral assignments. Following activation by KOH, compounds 1 , 2 , 3 , 4 catalyzed the transfer hydrogenation of acetophenone derivatives to 1‐phenylethanol derivatives in the presence of iso‐PrOH as the hydrogen source. Notably [Ru(Ph2PNHCH2‐C4H3O)(η6‐benzene)Cl2] 3 acts as an excellent catalyst, giving the corresponding alcohols in 98–99% yield in 20 min at 82°C (time of flight ≤ 297 h?1) for the transfer hydrogenation reaction in comparison to analogous rhodium or iridium complexes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
1,5,7-Triazabicyclo[4.4.0]dec-5-ene (TBD) is an effective organocatalyst for acyl transfer as well as the ring-opening polymerization of cyclic esters. Its high activity is attributed to its ability to simultaneously activate both esters and alcohols, as demonstrated in a model reaction. This unique mechanism makes TBD a remarkably simple example of a bifunctional catalyst. The simplicity of the reaction conditions, the ready commercial availability of the catalyst, and its high activity provide an accessible methodology to allow future studies of tailor-made polyesters.  相似文献   

10.
Two novel regioisomeric calix[4]arene derivatives (2 and 3), decorated with two aza[18]crown-6 units at vicinal (1,2) or diagonal (1,3) positions of the upper rim, were synthesized. The catalytic activities of their dinuclear Ba2+ complexes were investigated in the ethanolysis of esters 8-11, endowed with a carboxylate anchoring group. Major results are as follows: 1) the two metal ions in the dinuclear catalysts work together in a cooperative fashion; 2) the vicinal calix[4]arene catalyst 2 is far superior to its diagonal regioisomer 3 in the reactions of all of the investigated esters; and 3) the distance between the carboxylate and ester carbonyl, which increases regularly from 8 to 11, influences reactivity of catalytic ester cleavage in a way that is decidedly suggestive of the importance of a good match between ester size and metal-to-metal distance. However, the superiority of the vicinal catalyst 2 relative to 3 cannot be explained on the basis of the putative match of ester size to intermetal distance, thus providing an indication that additional, still poorly understood effects may contribute significantly to catalytic efficiency.  相似文献   

11.
Twelve ruthenium(III) complexes bearing amine-bis(phenolate) tripodal ligands of general formula [Ru(L1–L3)(X)(EPh3)2] (where L1–L3 are dianionic tridentate chelator) have been synthesized by the reaction of ruthenium(III) precursors [RuX3(EPh3)3] (where E = P, X = Cl; E = As, X = Cl or Br) and [RuBr3(PPh3)2(CH3OH)] with the tripodal tridentate ligands H2L1, H2L2 and H2L3 in benzene in 1:1 molar ratio. The newly synthesized complexes have been characterized by analytical (elemental and magnetic susceptibility) and spectral methods. The complexes are one electron paramagnetic (low-spin, d5) in nature. The EPR spectra of the powdered samples at RT and the liquid samples at LNT shows the presence of three different ‘g’ values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. The redox potentials indicate that all the complexes undergo one electron transfer process. The catalytic activity of one of the complexes [Ru(pcr-chx)Br(AsPh3)2] was examined in the transfer hydrogenation of ketones and was found to be efficient with conversion up to 99% in the presence of isopropanol/KOH.  相似文献   

12.
13.
The scope of the barium salt of p-tert-butylcalix[4]arene-crown-5 as a transacylation catalyst has been defined by evaluating its efficiency in the methanolysis of a series of aryl acetates at 25.0 degrees C in MeCN/MeOH 9:1 (v/v) under slightly basic conditions. In this system a phenolic hydroxyl is the acyl-receiving and -releasing unit in a double-displacement mechanism. The complexed barium ion acts both as a nucleophile carrier and a built-in Lewis acid in providing electrophilic assistance to the ester carbonyl both in the acylation and deacylation step (nucleophilic-electrophilic catalysis). Turnover capability is ensured by the acylated intermediate reacting with the solvent more rapidly than the original ester, but a serious drawback derives from the incursion of back-acylation of the liberated phenol. A gradual shift from rate-determining deacylation (p-nitrophenyl acetate) to rate-determining acylation (phenyl acetate) is observed along the investigated series. It is shown that the scope of the catalyst is restricted to acetate esters whose reactivity lies in the range approximately defined by the phenyl acetate-p-nitrophenyl acetate pair, with a maximum efficiency for p-chlorophenyl acetate. Moreover, the catalyst effectively promotes ester interchange between phenols, showing that its activity is not limited to solvolysis reactions. The very high sensitivity of the rate of acylation of the catalyst to leaving group basicity has been interpreted as due to rate-determining decomposition of the tetrahedral intermediate, which is believed to arise from the presumably low basicity of the metal ion stabilized nucleophile. The turnover frequency was in the range of 3.8 x 10(-4) min(-1) for phenyl acetate to 7.4 x 10(-3) min(-1) for p-nitrophenyl acetate ([ArOAc]0=4.0 mM]). A first attempt to enhance the rate of acylation of the catalyst through intramolecular general acid catalysis is also described.  相似文献   

14.
We report the condensation of substituted 2-aminopyridines 5 with β-ketocarboxylic esters in polyphosphoric acid. In this reaction were obtained together with the target compounds, 4H-pyrido[1,2-a]pyrirnidin-4-ones 6 also the pyridin-2-ones 7 . All the compounds 7 were tested for their calcium-antagonistic activity but failed to evoke any vasorelaxant response.  相似文献   

15.
Optical yields obtained in the hydrogenation of acetophenone with cationic and in situ rhodium complex catalysts depend on the P/Rh ratio and on the ionic or non-ionic character of the active species. The enantioselectivity of the in situ catalyst containing (+)-DIOP is reversed by addition of achiral tri-n-alkyl-phosphines. On the basis of these observations and the amount of H2 consumed in preforming the catalysts, several different mechanisms are suggested: for example: cycles involving cationic rhodium complexes containing two (or three) phosphorus ligands and cycles involving non-ionic rhodium complexes with two phosphorus ligands in cis or trans positions. In the in situ catalyst with a Rh/(+)-DIOP/P-n-Bu3  1/1/1 ratio (+)-DIOP functions as a monodentate ligand.  相似文献   

16.
The dioxomolybdenum(VI) complexes [MoO2Cl2] (1), [MoO2(acac)2] (2), [MoO2(S2CNEt2)2] (3), [CpMoO2Cl] (4), [MoO2(mes)2] (5) and the polymeric organotin-oxomolybdates [(R3Sn)2MoO4] [R = n-Bu (6), t-Bu (7), Me (8)] were examined as catalysts for the hydrosilylation of aldehydes and ketones with dimethylphenylsilane. Of these, [MoO2Cl2] (1) was the most efficient catalyst, affording quantitative yields of the corresponding silylated ethers at room temperature in acetonitrile. Complexes 2, 4-8 also catalyzed the same reaction but required heating at 80 degrees C and longer reaction times compared with 1. Compound 3 is inactive. The wide scope of molybdenum oxide-mediated hydrosilylation was established with a variety of aldehydes and ketones. Counter intuitively, the activity of is 1 highest in NCMe. In the absence of a carbonyl substrate, [MoO2Cl2(NCBu(t))] (10) reacts with HSiMe2Ph affording [MoO(OSiMe2Ph)Cl2]2 (11) which has been fully characterized by NMR and IR spectroscopy, elemental analyses and mass spectrometry. Addition of radical scavengers strongly slows down the [MoO2Cl2]-based hydrosilylation suggesting the intermediacy of oxygen-centered radicals.  相似文献   

17.
The long-known, but previously unexplored 2,3-dihydroimidazo[1,2-a]pyridine (DHIP) has been shown to be a competent acyl transfer catalyst. Its chiral 2-phenyl derivatives obtainable in two steps from commercially available starting materials have proved to be effective acylation catalysts, giving high levels of enantioselectivity (s = 20-85) in kinetic resolution of secondary benzylic alcohols. A transition state model explaining the observed selectivity has been proposed.  相似文献   

18.
《Tetrahedron: Asymmetry》2005,16(9):1603-1610
The dynamic kinetic resolution of secondary alcohols using a lipase and a ruthenium catalyst as developed by Bäckvall required some improvements to make it suitable for its use in an industrial process. The use of p-chlorophenyl acetate as acyl donor is not desirable in view of the toxicity of the side product. We herein report that simple alkyl esters can be used as acyl donors if the alcohol or ketone residue formed during the enzymatic acylation is continuously removed during the reaction. The addition of a ketone speeds up the racemisation process and allowed us to reduce the amounts of enzyme and ruthenium catalyst. The scope of this method was explored and a suitable range of acyl donors found. Various benzylic and aliphatic alcohols were reacted using isopropyl butyrate or methyl phenylacetate as acyl donor and in most cases the ester was isolated in >95% yield and 99% ee. Furthermore, it was demonstrated that the alcohol by-products of the enzymatic resolution could be used as the hydrogen source in the asymmetric reductive transesterification of ketones.  相似文献   

19.
Bis-imino Cu(II) complex (CuLAn2), in which the imine ligand (HLAn) acts as a bidentate chelating ligand, was synthesized. The catalytic potential of the inorganic-organocatalyst was studied homogeneously and heterogeneously in the oxidation of aniline and 2-aminopyridine by H2O2 or tBuOOH. Two heterogeneous inorganic-organocatalysts, CuLAn2@Fe3O4 and CuLAn2@SiO2@Fe3O4, were synthesized by the successful immobilization of CuLAn2 on the Fe3O4 surface and the composited Fe3O4 with SiO2, respectively. The heterogeneous structure of those inorganic-organocatalysts was confirmed using Fourier-transform infrared, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic properties. The adsorption–desorption isotherms revealed respectable adsorption parameters (SBET, Vp, and rp). All catalysts exhibited high potential in the oxidation of aniline (with phenylhydroxylamine as the main product) and good potential in the oxidation of 2-aminopyridine, in the first attempt (with 2-nitropyridine-N-oxide and 2-nitrosopyridine-N-oxide as main products), at room temperature. Acetonitrile was found to be the best solvent compared to ethanol, dimethyl sulfoxide, chloroform, and water. The homogeneous catalyst exhibited reusability for three times. The heterogeneous catalysts, CuLAn2@Fe3O4 and CuLAn2@SiO2@Fe3O4, were active for five and seven times, respectively. A mechanism was proposed within electron and oxygen transfer processes.  相似文献   

20.
Aromatic ketones are synthesized efficiently via cobalt catalyzed cross-coupling reaction between arylzinc bromides and acid chlorides. Arylzinc bromides prepared chemically via a cobalt catalysis undergo coupling without additional catalyst unlike their electrochemical analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号