首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The application of unsteady computational fluid dynamics (CFD) codes to aeroelastic calculations leads to a large number of degrees of freedom making them computationally expensive. Reduced‐order models (ROMs) have therefore been developed; an ROM is a system of equations which is able to reproduce the solutions of the full set of equations with reasonable accuracy, but which is of lower order. ROMs have been the focus of research in various engineering situations, but it is only relatively recently that such techniques have begun to be introduced into CFD. In order for the reduced systems to be generally applicable to aeroelastic calculations, it is necessary to have continuous time models that can be put into discrete form for different time steps. While some engineering reduction schemes can produce time‐continuous models directly, the majority of methods reported in CFD initially produce discrete time or discrete frequency models. Such models are restricted in their applicability and in order to overcome this situation, a continuous time ROM must be extracted from the discrete time system. This process can most simply be achieved by inverting the transformation from continuous to discrete time that was initially used to discretize the CFD scheme. However an alternative method reported in literature is based on continuous time sampling, even when this is not used for the initial discretization of the CFD code. This paper focuses on one particular method for ROM generation, eigensystem realization algorithm (ERA), that has been used in the CFD field. This is implemented to produce a discrete time ROM from a standard CFD code, that can be used to investigate methods for obtaining continuous ROMs and the limitations of the resulting models. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
罗祖军  徐健学 《力学季刊》2000,21(3):288-293
连续动力系统的非线性动力学研究,由于其应用的广泛性与问题的复杂性,近年来越来越受到重视。本文对一类生物流体力学中的连续系统-动脉局部狭窄时血液流动的分岔特性进行了研究,采用有限差分方法,将由偏微分方程组描述的边境动力系统约化为由常微分方程组描述的高维离散动力系统。求得了离散动力系统的平衡解并分析其稳定性,同时讨论了流场中变量空间分布的变化情况。求得了离散动力系统的前三个Lyapunov指数,以此作为系统是否发生混沌的判别条件。  相似文献   

3.
In this paper, the buckling and post-buckling behavior of an elastic lattice system referred to as the discrete elastica problem is investigated using an equivalent non-local continuum approach. The geometrically exact post-buckling analysis of the elastic chain, also called Hencky system, is first numerically solved using the shooting method. This discrete physical model is also mathematically equivalent to a finite difference formulation of the continuum elastica. Starting from the exact difference equations of the discrete problem, a continualization method is applied for approximating the difference operators by differential ones, in order to better characterize the discrete system by an enriched continuous one. It is shown that the new continuum associated with the discrete system exactly fits the discrete elastica post-buckling problem, where the non-locality is of Eringen׳s type (also called stress gradient non-local model). An asymptotic expansion is performed for both the discrete and the non-local continuum models, in order to approximate the post-buckling branches of the discrete system. Some numerical investigations show the efficiency of the non-local approach, especially for capturing the scale effects inherent to the cell size of the lattice model.  相似文献   

4.
In this paper we analyse numerical models for time-dependent Boussinesq equations. These equations arise when so-called Boussinesq terms are introduced into the shallow water equations. We use the Boussinesq terms proposed by Katapodes and Dingemans. These terms generalize the constant depth terms given by Broer. The shallow water equations are discretized by using fourth-order finite difference formulae for the space derivatives and a fourth-order explicit time integrator. The effect on the stability and accuracy of various discrete Boussinesq terms is investigated. Numerical experiments are presented in the case of a fourth-order Runge-Kutta time integrator.  相似文献   

5.
A method to determine the nonstationary temperature fields and the thermoelastoplastic stress-strain state of noncircular cylindrical shells is developed. It is assumed that the physical and mechanical properties are dependent on temperature. The heat-conduction problem is solved using an explicit difference scheme. The temperature variation throughout the thickness is described by a power polynomial. For the other two coordinates, finite differences are used. The thermoplastic problem is solved using the geometrically nonlinear theory of shells based on the Kirchhoff-Love hypotheses. The theory of simple processes with deformation history taken into account is used. Its equations are linearized by a modified method of elastic solutions. The governing system of partial differential equations is derived. Variables are separated in the case where the curvilinear edges are hinged. The partial case where the stress-strain state does not change along the generatrix is examined. The systems of ordinary differential equations obtained in all these cases are solved using Godunov's discrete orthogonalization. The temperature field in a shell with elliptical cross-section is studied. The stress-strain state found by numerical integration along the generatrix is compared with that obtained using trigonometric Fourier series. The effect of a Winkler foundation on the stress-strain state is analyzed Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 79–90, August 2008.  相似文献   

6.
In this paper, we discretize the 2-D incompressible Navier-Stokes equations with the periodic boundary condition by the finite difference method. We prove that with a shift for discretization, the global solutions exist. After proving some discrete Sobolev inequalities in the sense of finite differences, we prove the existence of the global attractors of the discretized system, and we estimate the upper bounds for the Hausdorff and the fractal dimensions of the attractors. These bounds are indepent of the mesh sizes and are considerably close to those of the continuous version.  相似文献   

7.
Seeking the optimal operating policy by an off-line controller for pipelines carrying natural gas has an inherent state estimation problem associated with deviations from demand forecast. This paper presents a Kalman-filter-based observer for the real-time estimation of deviations from the states previously obtained by an off-line controller optimally, around an expected demand function. The observer is based on the linearized form of the non-linear partial differential equations which are the state space representation of isothermal and unidirectional gas flow through a pipeline. Data for the observer are produced by a dynamic simulator. The simulator and linearized observer equations are solved using an implicit finite element method. The observer has been tested on a pipeline subject to certain deviations from demand forecast. It converge s in a short span of time. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
In this paper we investigate the possibility to formulate an implicit multistep numerical method for fractional differential equations, as a discrete dynamical system to model a class of discontinuous dynamical systems of fractional order. For this purpose, the problem is continuously transformed into a set-valued problem, to which the approximate selection theorem for a class of differential inclusions applies. Next, following the way presented in the book of Stewart and Humphries (Dynamical Systems and Numerical Analysis, Cambridge University Press, Cambridge, 1996) for the case of continuous differential equations, we prove that a variant of Adams?CBashforth?CMoulton method for fractional differential equations can be considered as defining a discrete dynamical system, approximating the underlying discontinuous fractional system. For this purpose, the existence and uniqueness of solutions are investigated. One example is presented.  相似文献   

9.
层状饱和土Biot固结问题状态空间法   总被引:6,自引:1,他引:6  
针对饱和多孔介质空间非轴对Biot固结问题,引入状态变量,构造了两组相比独立的状态变量方程,利用Fourier级数和Laplace-Hankel变换,将状态变量方程转换为两组一阶常微分方程组,提出了均质饱和多孔介质空间非轴对称Biot固结问题的传递矩阵,得到以状态变量和传递矩阵乘积的形式表示的均质饱和多孔介质空间非轴对称Biot固结问题的解,利用层间完全接触的条件,可得到N层饱和多孔介质空间非轴对称Biot固结问题的一般解析表达式,文中考虑几种不同的边界条件,分析了两个算例,数值结果表明该方法具有较高的计算精度和良好的计算稳定性。  相似文献   

10.
针对圆柱体的三维温度场分析,提出了一种高效的半解析-精细积分法。将温度场展开为环向坐标的Fourier级数,并对径向坐标进行差分离散,从而把三维热传导方程简化为一系列二阶常微分方程;将这些二阶常微分方程转化为哈密顿体系下的一阶状态方程,并利用两点边值问题的精细积分法求解。由于该方法仅对径向坐标进行差分离散,故相对于传统的数值方法离散规模大幅度减少,不仅提高了计算效率、降低了存贮量,而且缓解了代数方程的病态问题。此外,针对Fourier半解析解,根据热平衡原理推导出了两种材料衔接面的半解析差分方程,从而为求解复合材料层合柱问题打下了基础。算例结果表明,即使对于细长比高达400的圆柱杆件,此方法仍然可以给出精度较高的解答。  相似文献   

11.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This work is to study the performance of an ecological ventilated self-weighted wood panel used on roofs in order to get a high energy savings. With this aim, we have carried out a convective heat transfer analysis of the panel by the finite volume method (FVM). Pure conduction is found in the wood panel through their thermal properties. Heat transfer by convection is always accompanied by conduction, that is to say, among the external air and the upper internal surface of the panel, and the internal air and the inner lower surface of the panel taking into account the heat conduction of the internal ribs. The finite volume method (FVM) is a method for representing and evaluating partial differential equations as algebraic equations. Similar to the finite difference method, values are calculated at discrete places on a meshed geometry. ‘Finite volume’ refers to the small volume surrounding each node point on a mesh. In the finite volume method, volume integrals in a partial differential equation that contain a divergence term are converted to surface integrals, using the divergence theorem. These terms are then evaluated as fluxes at the surfaces of each finite volume. Because the flux entering a given volume is identical to that leaving the adjacent volume, these methods are conservative. One advantage of the finite volume method over the finite difference method is that it does not require a structured mesh, although a structured mesh can be used. The FVM can solve problems on irregular geometries. Furthermore, one advantage of the finite volume method over the finite element method is that it can conserve the variables on a coarse mesh easily. This is an important characteristic for fluid problems just as in this case. Finally, conclusions of this study are exposed.  相似文献   

13.
A semi-analytic method is presented for the analysis of transient response of one-dimensional distributed parameter systems. Replacing time differentials by finite difference, the governing partial differential equations are reduced to difference–differential equations. The solutions of derived ordinary differential equations are given in exact and closed form by distributed transfer function method. Complex systems that contain many one-dimensional sub-systems are also studied. Numerical results show that the efficiency and accuracy of the method are excellent.  相似文献   

14.
With respect to an arbitrary configuration of a deformed structure, two sets of incremental equations are proposed for the deformation analysis of revolution shells and diaphragms loaded by both lateral pressures and the initial stresses produced in manufacturing. These general equations can be reduced to the simplified Koiter's Reissner-Meissner-Reissner (RMR) equations and the simplified Reissner's equations, when the initial stresses are set to zero. They can also be deduced to the total Lagrange form or the updated Lagrange form, respectively, as the structure is specified as the un-deformed or the former-deformed configurations. These incremental equations can be easily transformed into finite difference forms and solved by common numerical solvers of ordinary differential equations. Some numerical examples are presented to show the applications of the incremental equations to the deep shell of revolution and the corrugated diaphragms used in microelectronical mechanical system (MEMS). The results are in good agreement with those from finite element method (FEM).  相似文献   

15.
一种典型的半解析数值方法——线法被引入功能梯度材料的结构分析。首先推导了功能梯度材料位移形式的平衡方程和边界条件,然后阐述了线法功能梯度材料结构分析的基本步骤和数值原理。该方法的基本思想是通过有限差分将问题的控制方程半离散为定义在沿梯度方向离散节线上的常微分方程组,然后应用B样条函数Gauss配点法求解该常微分方程组得到问题的解答。为演示线法在功能梯度材料结构分析中的应用,给出了线性梯度和指数梯度功能梯度材料板分别受恒定位移、均匀拉伸载荷和弯曲载荷作用的数值算例。与相应问题解析解和其他数值方法的比较表明,线法的计算结果具有很高的精度,而且不需要任何特殊的考虑就能够有效模拟材料内部物性参数的连续变化,也无需事先选取满足特定条件的待定场函数,是一种非常适合功能梯度材料结构形式和材料特点的半解析数值方法。  相似文献   

16.
稀薄流非线性模型方程离散速度坐标法有限差分解   总被引:1,自引:1,他引:0  
从一般非线性Bo ltzm ann方程出发,发展并实现了一套适于大范围K nudsen数稀薄流问题数值模拟的统一算法。采用BGK模型和Shakov模型近似碰撞项,进而引入两个二速度无量纲简化分布函数,通过关于分子速度第三分量取矩积分,将三速度单一模型方程变换为二速度微分方程组。基于G auss-H erm ite积分公式和正交多项式G auss积分公式,借助离散速度坐标法消除简化模型方程对分子速度空间的连续依赖性,从相空间到物理空间得到一组带源项双曲守恒离散方程,并给出其显式和隐式二阶迎风TVD有限差分解。以二维圆柱A r气体超声速绕流算例,验证了数值算法的有效性,比较分析了漫反射和镜面反射两种气体分子壁面反射模型的计算结果。  相似文献   

17.
A bifurcation analysis of a two-dimensional airfoil with a structural nonlinearity in the pitch direction and subject to incompressible flow is presented. The nonlinearity is an analytical third-order rational curve fitted to a structural freeplay. The aeroelastic equations-of-motion are reformulated into a system of eight first-order ordinary differential equations. An eigenvalue analysis of the linearized equations is used to give the linear flutter speed. The nonlinear equations of motion are either integrated numerically using a fourth-order Runge-Kutta method or analyzed using the AUTO software package. Fixed points of the system are found analytically and regions of limit cycle oscillations are detected for velocities well below the divergent flutter boundary. Bifurcation diagrams showing both stable and unstable periodic solutions are calculated, and the types of bifurcations are assessed by evaluating the Floquet multipliers. In cases where the structural preload is small, regions of chaotic motion are obtained, as demonstrated by bifurcation diagrams, power spectral densities, phase-plane plots and Poincaré sections of the airfoil motion; the existence of chaos is also confirmed via calculation of the Lyapunov exponents. The general behaviour of the system is explained by the effectiveness of the freeplay part of the nonlinearity in a complete cycle of oscillation. Results obtained using this reformulated set of equations and the analytical nonlinearity are in good agreement with previously obtained finite difference results for a freeplay nonlinearity.  相似文献   

18.
给出了弹性力学三维问题的离散算子差分法 ,讨论离散算子差分法在三维问题中的特点 ,意在为该方法的进一步发展提供依据 ,为应用弱形式进行数值求解的研究提供参考。本文从弹性力学平衡方程更为一般的弱形式出发 ,给出了含边界参数的弱形式方程。由该方程不仅可以得到有限元法 ,还可得到离散算子差分法。给出了两个八结点块体单元 ,虽然单元中位移函数是非协调的 ,不需特殊处理便可保证离散格式收敛 ,并对单元位移有十分好的反映能力。  相似文献   

19.
In this study, the discretized finite volume form of the two-dimensional, incompressible Navier-Stokes equations is solved using both a frozen coefficient and a full Newton non-linear iteration. The optimal method is a combination of these two techniques. The linearized equations are solved using a conjugate-gradient-like method (CGSTAB). Various types of preconditioning are developed. Completely general sparse matrix methods are used. Investigations are carried out to determine the effect of finite volume cell anisotropy on the preconditioner. Numerical results are given for several test problems.  相似文献   

20.
This paper presents reduced order modelling (ROM) in fluid–structure interaction (FSI). The ROM via the proper orthogonal decomposition (POD) method has been chosen, due to its efficiency in the domain of fluid mechanics. POD-ROM is based on a low-order dynamical system obtained by projecting the nonlinear Navier–Stokes equations on a smaller number of POD modes. These POD modes are spatial and temporally independent. In FSI, the fluid and structure domains are moving, owing to which the POD method cannot be applied directly to reduce the equations of each domain. This article proposes to compute the POD modes for a global velocity field (fluid and solid), and then to construct a low-order dynamical system. The structure domain can be decomposed as a rigid domain, with a finite number of degrees of freedom. This low-order dynamical system is obtained by using a multiphase method similar to the fictitious domain method. This multiphase method extends the Navier–Stokes equations to the solid domain by using a penalisation method and a Lagrangian multiplier. By projecting these equations on the POD modes obtained for the global velocity field, a nonlinear low-order dynamical system is obtained and tested on a case of high Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号