首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An implicit finite volume model in sigma coordinate system is developed to simulate two‐dimensional (2D) vertical free surface flows, deploying a non‐hydrostatic pressure distribution. The algorithm is based on a projection method which solves the complete 2D Navier–Stokes equations in two steps. First the pressure term in the momentum equations is excluded and the resultant advection–diffusion equations are solved. In the second step the continuity and the momentum equation with only the pressure terms are solved to give a block tri‐diagonal system of equation with pressure as the unknown. This system can be solved by a direct matrix solver without iteration. A new implicit treatment of non‐hydrostatic pressure, similar to the lower layers is applied to the top layer which makes the model free of any hydrostatic pressure assumption all through the water column. This treatment enables the model to evaluate both free surface elevation and wave celerity more accurately. A series of numerical tests including free‐surface flows with significant vertical accelerations and nonlinear behaviour in shoaling zone are performed. Comparison between numerical results, analytical solutions and experimental data demonstrates a satisfactory performance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, the CLEAR (coupled and linked equations algorithm revised) algorithm is extended to non‐orthogonal curvilinear collocated grids. The CLEAR algorithm does not introduce pressure correction in order to obtain an incompressible flow field which satisfies the mass conservation law. Rather, it improves the intermediate velocity by solving an improved pressure equation to make the algorithm fully implicit since there is no term omitted in the derivation process. In the extension of CLEAR algorithm from a staggered grid system in Cartesian coordinates to collocated grids in non‐orthogonal curvilinear coordinates, three important issues are appropriately treated so that the extended CLEAR can lead to a unique solution without oscillation of pressure field and with high robustness. These three issues are (1) solution independency on the under‐relaxation factor; (2) strong coupling between velocity and pressure; and (3) treatment of the cross pressure gradient terms. The flow and heat transfer problems in a rectangular enclosure with an internal eccentric circle and the flow in a lid‐driven inclined cavity are computed by using the extended CLEAR. The results show that the extended CLEAR can guarantee the solution independency on the under‐relaxation factor, the smoothness of pressure profile even at very small under‐relaxation factor and good robustness which leads to a converged solution for the small inclined angle of 5° only with 5‐point computational molecule while the extended SIMPLE‐series algorithm usually can get a converged solution for the inclined angle larger than 30° under the same condition. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
This paper makes the first attempt of extending implicit AUSM‐family schemes to multiphase flow simulations. Water faucet, air–water shock tube and oscillating manometer problems are used as benchmark tests with the generic four‐equation two‐fluid model. For solving the equations implicitly, Newton's method along with a sparse matrix solver (UMFPACK solver) is employed, and the numerical Jacobian matrix is calculated. Comparison between implicit and explicit AUSM‐family schemes is presented, indicating that similarly accurate results are obtained with both schemes. Furthermore, the water faucet problem is solved using both staggered and collocated grids. This investigation helps integrate high‐resolution schemes into staggered‐grid‐based computational algorithms. The influence of the interface pressure correction on the simulation results is also examined. Results show that the interfacial pressure correction introduces numerical dissipation. However, this dissipation cannot eliminate the overshoots because of the incompatibility of numerical discretization of the conservative and non‐conservative terms in the governing equations. The comparison of CPU time between implicit and explicit schemes is also studied, indicating that the implicit scheme is capable of improving the computational efficiency over its explicit counterpart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Families of flux‐continuous, locally conservative, finite‐volume schemes have been developed for solving the general tensor pressure equation of petroleum reservoir simulation on structured and unstructured grids. The schemes are applicable to diagonal and full tensor pressure equation with generally discontinuous coefficients and remove the O(1) errors introduced by standard reservoir simulation schemes when applied to full tensor flow approximation. The family of flux‐continuous schemes is quantified by a quadrature parameterization. Improved convergence using the quadrature parameterization has been established for the family of flux‐continuous schemes. When applied to strongly anisotropic full‐tensor permeability fields the schemes can fail to satisfy a maximum principle (as with other FEM and finite‐volume methods) and result in spurious oscillations in the numerical pressure solution. This paper presents new non‐linear flux‐splitting techniques that are designed to compute solutions that are free of spurious oscillations. Results are presented for a series of test‐cases with strong full‐tensor anisotropy ratios. In all cases the non‐linear flux‐splitting methods yield pressure solutions that are free of spurious oscillations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A semi‐implicit, staggered finite volume technique for non‐hydrostatic, free‐surface flow governed by the incompressible Euler equations is presented that has a proper balance between accuracy, robustness and computing time. The procedure is intended to be used for predicting wave propagation in coastal areas. The splitting of the pressure into hydrostatic and non‐hydrostatic components is utilized. To ease the task of discretization and to enhance the accuracy of the scheme, a vertical boundary‐fitted co‐ordinate system is employed, permitting more resolution near the bottom as well as near the free surface. The issue of the implementation of boundary conditions is addressed. As recently proposed by the present authors, the Keller‐box scheme for accurate approximation of frequency wave dispersion requiring a limited vertical resolution is incorporated. The both locally and globally mass conserved solution is achieved with the aid of a projection method in the discrete sense. An efficient preconditioned Krylov subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric matrix is treated. Some numerical experiments to show the accuracy, robustness and efficiency of the proposed method are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper is concerned with the development of a high‐order upwind conservative discretization method for the simulation of flows of a Newtonian fluid in two dimensions. The fluid‐flow domain is discretized using a Cartesian grid from which non‐overlapping rectangular control volumes are formed. Line integrals arising from the integration of the diffusion and convection terms over control volumes are evaluated using the middle‐point rule. One‐dimensional integrated radial basis function schemes using the multiquadric basis function are employed to represent the variations of the field variables along the grid lines. The convection term is effectively treated using an upwind scheme with the deferred‐correction strategy. Several highly non‐linear test problems governed by the Burgers and the Navier–Stokes equations are simulated, which show that the proposed technique is stable, accurate and converges well. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a two‐dimensional finite element model for simulating dynamic propagation of weakly dispersive waves. Shallow water equations including extra non‐hydrostatic pressure terms and a depth‐integrated vertical momentum equation are solved with linear distributions assumed in the vertical direction for the non‐hydrostatic pressure and the vertical velocity. The model is developed based on the platform of a finite element model, CCHE2D. A physically bounded upwind scheme for the advection term discretization is developed, and the quasi second‐order differential operators of this scheme result in no oscillation and little numerical diffusion. The depth‐integrated non‐hydrostatic wave model is solved semi‐implicitly: the provisional flow velocity is first implicitly solved using the shallow water equations; the non‐hydrostatic pressure, which is implicitly obtained by ensuring a divergence‐free velocity field, is used to correct the provisional velocity, and finally the depth‐integrated continuity equation is explicitly solved to satisfy global mass conservation. The developed wave model is verified by an analytical solution and validated by laboratory experiments, and the computed results show that the wave model can properly handle linear and nonlinear dispersive waves, wave shoaling, diffraction, refraction and focusing. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two‐dimensional shallow water equations, in a non‐orthogonal boundary‐fitted co‐ordinate system. The phase and group speeds for the spatially discretized equations, using the second‐order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non‐orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non‐orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184 : 299–320). The stability condition for the non‐orthogonal case is satisfied even when the grid non‐orthogonality angle, is as low as 30° for the Crank Nicolson and three‐time level schemes. A two‐dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM‐5294‐PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two‐time level Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A new fully non‐hydrostatic model is presented by simulating three‐dimensional free surface flow on a vertical boundary‐fitted coordinate system. A projection method, known as pressure correction technique, is employed to solve the incompressible Euler equations. A new grid arrangement is proposed under a horizontal Cartesian grid framework and vertical boundary‐fitted coordinate system. The resulting model is relatively simple. Moreover, the discretized Poisson equation for pressure correction is symmetric and positive definite, and thus it can be solved effectively by the preconditioned conjugate gradient method. Several test cases of surface wave motion are used to demonstrate the capabilities and numerical stability of the model. Comparisons between numerical results and analytical or experimental data are presented. It is shown that the proposed model could accurately and effectively resolve the motion of short waves with only two layers, where wave shoaling, nonlinearity, dispersion, refraction, and diffraction phenomena occur. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
The hydrostatic pressure assumption has been widely used in studying water movements in rivers, lakes, estuaries, and oceans. While this assumption is valid in many cases and has been successfully used in numerous studies, there are many cases where this assumption is questionable. This paper presents a three‐dimensional, hydrodynamic model for free‐surface flows without using the hydrostatic pressure assumption. The model includes two predictor–corrector steps. In the first predictor–corrector step, the model uses hydrostatic pressure at the previous time step as an initial estimate of the total pressure field at the new time step. Based on the estimated pressure field, an intermediate velocity field is calculated, which is then corrected by adding the non‐hydrostatic component of the pressure to the estimated pressure field. A Poisson equation for non‐hydrostatic pressure is solved before the second intermediate velocity field is calculated. The final velocity field is found after the free surface at the new time step is computed by solving a free‐surface correction equation. The numerical method was validated with several analytical solutions and laboratory experiments. Model results agree reasonably well with analytical solutions and laboratory results. Model simulations suggest that the numerical method presented is suitable for fully hydrodynamic simulations of three‐dimensional, free‐surface flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
We reformulate the depth‐averaged non‐hydrostatic extension for shallow water equations to show equivalence with well‐known Boussinesq‐type equations. For this purpose, we introduce two scalars representing the vertical profile of the non‐hydrostatic pressure. A specific quadratic vertical profile yields equivalence to the Serre equations, for which only one scalar in the traditional equation system needs to be modified. Equivalence can also be demonstrated with other Boussinesq‐type equations from the literature when considering variable depth, but then the non‐hydrostatic extension involves mixed space–time derivatives. In case of constant bathymetries, the non‐hydrostatic extension is another way to circumvent mixed space–time derivatives arising in Boussinesq‐type equations. On the other hand, we show that there is no equivalence when using the traditionally assumed linear vertical pressure profile. Linear dispersion and asymptotic analysis as well as numerical test cases show the advantages of the quadratic compared with the linear vertical non‐hydrostatic pressure profile in the depth‐averaged non‐hydrostatic extension for shallow water equations. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
There are two main difficulties in numerical simulation calculations using FD/FV method for the flows in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very non‐uniform locally. Some numerical models in this field solve the first difficulty by the use of physical curvilinear orthogonal co‐ordinates. However, it is very difficult to generate an orthogonal grid for real rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution is not required. Recently, more and more models solve the first difficulty by the use of generalized curvilinear co‐ordinates (ξ,η). The governing equations are expressed in a covariant or contra‐variant form in terms of generalized curvilinearco‐ordinates (ξ,η). However, some studies in real rivers indicate that this kind of method has some undesirable mesh sensitivities. Sharp differences in adjacent mesh size may easily lead to a calculation stability problem oreven a false simulation result. Both approaches used presently have their own disadvantages in solving the two difficulties that exist in real rivers. In this paper, the authors present a method for two‐dimensional shallow water flow calculations to solve both of the main difficulties, by formulating the governing equations in a physical form in terms of physical curvilinear non‐orthogonal co‐ordinates (s,n). Derivation of the governing equations is explained, and two numerical examples are employed to demonstrate that the presented method is applicable to non‐orthogonal and significantly non‐uniform grids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
A semi‐implicit three‐step Runge–Kutta scheme for the unsteady incompressible Navier–Stokes equations with third‐order accuracy in time is presented. The higher order of accuracy as compared to the existing semi‐implicit Runge–Kutta schemes is achieved due to one additional inversion of the implicit operator I‐τγL, which requires inversion of tridiagonal matrices when using approximate factorization method. No additional solution of the pressure‐Poisson equation or evaluation of Navier–Stokes operator is needed. The scheme is supplied with a local error estimation and time‐step control algorithm. The temporal third‐order accuracy of the scheme is proved analytically and ascertained by analysing both local and global errors in a numerical example. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This paper reports on the implementation and testing, within a full non‐linear multi‐grid environment, of a new pressure‐based algorithm for the prediction of multi‐fluid flow at all speeds. The algorithm is part of the mass conservation‐based algorithms (MCBA) group in which the pressure correction equation is derived from overall mass conservation. The performance of the new method is assessed by solving a series of two‐dimensional two‐fluid flow test problems varying from turbulent low Mach number to supersonic flows, and from very low to high fluid density ratios. Solutions are generated for several grid sizes using the single grid (SG), the prolongation grid (PG), and the full non‐linear multi‐grid (FMG) methods. The main outcomes of this study are: (i) a clear demonstration of the ability of the FMG method to tackle the added non‐linearity of multi‐fluid flows, which is manifested through the performance jump observed when using the non‐linear multi‐grid approach as compared to the SG and PG methods; (ii) the extension of the FMG method to predict turbulent multi‐fluid flows at all speeds. The convergence history plots and CPU‐times presented indicate that the FMG method is far more efficient than the PG method and accelerates the convergence rate over the SG method, for the problems solved and the grids used, by a factor reaching a value as high as 15. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, the global method of differential quadrature (DQ) is applied to solve three‐dimensional Navier–Stokes equations in primitive variable form on a non‐staggered grid. Two numerical approaches were proposed in this work, which are based on the pressure correction process with DQ discretization. The essence in these approaches is the requirement that the continuity equation must be satisfied on the boundary. Meanwhile, suitable boundary condition for pressure correction equation was recommended. Through a test problem of three‐dimensional driven cavity flow, the performance of two approaches was comparatively studied in terms of the accuracy. The numerical results were obtained for Reynolds numbers of 100, 200, 400 and 1000. The present results were compared well with available data in the literature. In this work, the grid‐dependence study was done, and the benchmark solutions for the velocity profiles along the vertical and horizontal centrelines were given. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents the derivation of a depth‐integrated wave propagation and runup model from a system of governing equations for two‐layer non‐hydrostatic flows. The governing equations are transformed into an equivalent, depth‐integrated system, which separately describes the flux‐dominated and dispersion‐dominated processes. The depth‐integrated system reproduces the linear dispersion relation within a 5 error for water depth parameter up to kd = 11, while allowing direct implementation of a momentum conservation scheme to model wave breaking and a moving‐waterline technique for runup calculation. A staggered finite‐difference scheme discretizes the governing equations in the horizontal dimension and the Keller box scheme reconstructs the non‐hydrostatic terms in the vertical direction. An semi‐implicit scheme integrates the depth‐integrated flow in time with the non‐hydrostatic pressure determined from a Poisson‐type equation. The model is verified with solitary wave propagation in a channel of uniform depth and validated with previous laboratory experiments for wave transformation over a submerged bar, a plane beach, and fringing reefs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号