首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quasi-hydrodynamic system of equations describing flows of a heat-conducting viscous compressible multiphase multicomponent fluid is constructed taking into account surface effects. The system was obtained by generalizing the methods of obtaining a single-phase quasi-hydrodynamic system and a multicomponent flow model with surface effects based on the concept of microforces and microstresses. The equations are derived using the Coleman–Noll procedure. The results of the simulations show that the constructed model is applicable for modeling multiphase multicomponent flows with allowance for surface effects on the interfaces.  相似文献   

2.
An analytically solvable mathematical model for the cathode of a solid polymer electrolyte fuel cell is proposed. The problem of diffusion in a multicomponent air-vapor mixture in a porous cathode and water transport due to hydrodynamic and electroosmotic forces is solved. The volt-ampere characteristic of the fuel cell is determined taking into account the polarization characteristics and finite conductivity of the electrolyte. An expression is obtained for the thickness of the electrochemical-reaction zone, which gives an estimate of the catalyst efficiency. It is shown that the finiteness of the rate of oxygen diffusion into the reaction zone limits the current density and the fuel cell efficiency. A comparison of the results with available theoretical and experimental data shows that the solutions obtained for the model coincide with the solutions for the more complex Bernardi and Verbrugge model.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 27–37, September–October, 2005.  相似文献   

3.
In this work hydrodynamics of multicomponent ideal gas mixtures have been studied. Starting from the kinetic equations, the Eulerian approach is used to derive a new set of conservation equations for the multicomponent system where each component may have different velocity and kinetic temperature. The equations are based on the Grad's method of moment derived from the kinetic model in a relaxation time approximation (RTA). Based on this model which contains separate equation sets for each component of the system, a computer code has been developed for numerical computation of compressible flows of binary gas mixture in generalized curvilinear boundary conforming coordinates. Since these equations are similar to the Navier-Stokes equations for the single fluid systems, the same numerical methods are applied to these new equations. The Roe's numerical scheme is used to discretize the convective terms of governing fluid flow equations. The prepared algorithm and the computer code are capable of computing and presenting flow fields of each component of the system separately as well as the average flow field of the multicomponent gas system as a whole. Comparison of the present code results with those of a more common algorithm based on the mixture theory in a supersonic converging-diverging nozzle provides the validation of the present formulation. Afterwards, a more involved nozzle cooling problem with a binary ideal gas (helium-xenon) is chosen to compare the present results with those of the ordinary mixture theory. The present model provides the details of the flow fields of each component separately which is not available otherwise. It is also shown that the separate fluids treatment, such as the present study, is crucial when considering time scales on the order of (or shorter than) the intercollisions relaxation times.  相似文献   

4.
A mixture theory is developed for multi-component micropolar porous media with a combination of the hybrid mixture theory and the micropolar continuum theory. The system is modeled as multi-component micropolar elastic solids saturated with multi- component micropolar viscous fluids. Balance equations are given through the mixture theory. Constitutive equations are developed based on the second law of thermodynamics and constitutive assumptions. Taking account of compressibility of solid phases, the volume fraction of fluid as an independent state variable is introduced in the free energy function, and the dynamic compatibility condition is obtained to restrict the change of pressure difference on the solid-fluid interface. The constructed constitutive equations are used to close the field equations. The linear field equations are obtained using a linearization procedure, and the micropolar thermo-hydro-mechanical component transport model is established. This model can be applied to practical problems, such as contaminant, drug, and pesticide transport. When the proposed model is supposed to be porous media, and both fluid and solid are single-component, it will almost agree with Eringen's model.  相似文献   

5.
Standard Galerkin finite element methods (GFEM) lack stability in solving advection-dominated solute transport in porous media. They usually require prohibitively fine grids and extremely small time steps to solve for advection-dominated problems. The algebraic subgrid-scale stabilized (ASGS) finite element method has been proved to overcome such problems for single-species reactive transport. Its potential for dealing with multicomponent reactive transport has not yet been explored. Here we present a numerical formulation of ASGS for steady and transient multicomponent reactive transport. Subgrid-scale transport equations are solved first by using an ASGS approximation and their solutions are substituted back into the grid-scale equations. A sequential iteration approach (SIA) is used to solve for coupled transport and chemical equations. Coupling of ASGS and SIA, ASGS+SIA, has been implemented in a reactive transport code, CORE2D V4, and verified for conservative solute transport. ASGS+SIA has been tested for a wide range of 1-D transient multicomponent reactive transport problems involving different types of chemical reactions such as: (1) Kinetically controlled aqueous species degradation, (2) Kinetic mineral dissolution, (3) Serial-parallel decay networks, and (4) Cation exchange and pyrite oxidation at local equilibrium. ASGS+SIA always provides accurate solutions and therefore offers an efficient option to solve for advection-dominated multicomponent reactive transport problems.  相似文献   

6.
In this paper a computational dynamics model for duct-shaped geometry proton exchange membrane (PEM) fuel cell was used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the 2-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by increasing the thermal conductivity of the GDL and membrane, the overall cell performance increases.  相似文献   

7.
The aim of this study is to develop a tractable model of a nuclear reactor core taking the complexity of the structure (including its nonlinear behaviour) and fluid flow coupling into account. The mechanical behaviour modelling includes the dynamics of both the fuel assemblies and the fluid. Each rod bundle is modelled in the form of a deformable porous medium; then, the velocity field of the fluid and the displacement field of the structure are defined over the whole domain. The fluid and the structure are first modelled separately, before being linked together. The equations of motion for the structure are obtained using a Lagrangian approach and, to be able to link up the fluid and the structure, the equations of motion for the fluid are obtained using an arbitrary Lagragian Eulerian approach. The finite element method is applied to spatially discretize the equations. Simulations are performed to analyse the effects of the characteristics of the fluid and of the structure. Finally, the model is validated with a test involving two fuel assemblies, showing good agreement with the experimental data.  相似文献   

8.
In this study a complete two-dimensional model for proton exchange membrane (PEM) fuel cells was used to investigate the effect of using different obstacles on the performances, current density and gas concentration for different aspect ratios (ARs). The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Also a series of tests are carried out to investigate and validate the numerical results of the polarization curve under the normal conditions. A PEM fuel cell with 25 cm2 active area and Nafion 117 membrane with 4 mg Pt/cm2 for the anode and cathode is employed as a membrane electrode assembly. The results show that the predicted polarization curves by using this model are in good agreement with the experimental results. Also the results show that the local current density reduces more obviously at a higher overpotential than at a lower overpotential because of the more obvious reflection phenomena in the downstream region. At lower operating voltage conditions, the overall cell performance decreases as the AR decreases.  相似文献   

9.
The dissipative particle dynamics mesoscopic simulation method is analyzed thoroughly by identifying the scaling factors necessary to simulate a multicomponent system. A new framework of general expressions is derived relating the parameters in the system to their dimensionless quantities. The consistent non‐dimensionalization used in this paper serves to connect the previous models in the literature. When the scaling factors are based on the solvent in a multicomponent system, the system of equations reduces to the well‐known Groot and Warren model. Validation results for ideal, simple and binary immiscible fluids are presented and compared with established results from the literature. The framework established herein is an important step toward the practical application of dissipative particle dynamics for the analysis of complex fluid systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The problem of the steady axisymmetric two-phase flow of a multicomponent mixture through a porous medium with phase transitions is considered. It is shown that the system of equations for the two-phase multicomponent flow process, together with the equations of phase equilibrium, reduces to a system of two ordinary differential equations for the pressures in the gas and liquid phases. A family of numerical solutions is found under certain assumptions concerning the pressure dependence of the molar fraction of the liquid phase.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 92–97, November–December, 1994.  相似文献   

11.
讨论壁面有引射的滑移边界条件的提法.利用Chapman Enskog速度分布函数,通过分析Knudsen层外缘和壁面处的质量、动量和能量等通量守恒,得到了有壁面引射的多组元气体有催化反应的壁面滑移边界条件方程组.利用粘性激波层方程和所得的边界条件对钝头体绕流驻点区的流场进行了计算,讨论了物面引射对边界上诸量及流场的影响  相似文献   

12.
In this paper,a pseudopotential-based multiplerelaxation-time lattice Boltzmann model is proposed for multicomponent/multiphase flow systems.Unlike previous models in the literature,the present model not only enables the study of multicomponent flows with different molecular weights,different viscosities and different Schmidt numbers,but also ensures that the distribution function of each component evolves on the same square lattice without invoking additional interpolations.Furthermore,the Chapman-Enskog analysis shows that the present model results in the correct hydrodynamic equations,and satisfies the indifferentiability principle.The numerical validation exercises further demonstrate that the favorable performance of the present model.  相似文献   

13.
The paper deals with optimization of the Earth reentry trajectory by the magnitude of the total convective heat flux at the stagnation point of a blunted body. The equations of a thin (hypersonic) viscous shock layer taking into account the nonequilibrium nature of chemical reactions and multicomponent diffusion are used as the initial mathematical model for heat flux calculations. The optimal solution is obtained by an effective robust method using the basic ideas of genetic algorithms. Institute of Applied Mathematics and Mechanics, Tomsk State University, Tomsk 634050. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 41, No. 4, pp. 112–123, July–August, 2000.  相似文献   

14.
A single micro proton exchange membrane fuel cell (PEMFC) has been produced using Micro-electromechanical systems (MEMS) technology with the active area of 2.5 cm 2 and channel depth of about 500 μ m.A theoretical analysis is performed in this study for a novel MEMS-based design of a micro PEMFC.The model consists of the conservation equations of mass,momentum,species and electric current in a fully integrated finite-volume solver using the CFD-ACE+ commercial code.The polarization curves of simulation are well correlated with experimental data.Three-dimensional simulations are carried out to treat prediction and analysis of micro PEMFC temperature,current density and water distributions in two different fuel flow rates (15 cm 3 /min and 40 cm 3 /min).Simulation results show that temperature distribution within the micro PEMFC is affected by water distribution in the membrane and indicate that low and uniform temperature distribution in the membrane at low fuel flow rates leads to increased membrane water distribution and obtains superior micro PEMFC current density distribution under 0.4 V operating voltage.Model predictions are well within those known for experimental mechanism phenomena.  相似文献   

15.
16.
The problem of the propagation of a spherical detonation wave in water-saturated soil was solved in [1, 2] by using a model of a liquid porous multicomponent medium with bulk viscosity. Experiments show that soils which are not water saturated are solid porous multicomponent media having a viscosity, nonlinear bulk compression limit diagrams, and irreversible deformations. Taking account of these properties, and using the model in [2], we have solved the problem of the propagation of a spherical detonation wave from an underground explosion. The solution was obtained by computer, using the finite difference method [3]. The basic wave parameters were determined at various distances from the site of the explosion. The values obtained are in good agreement with experiment. Models of soils as viscous media which take account of the dependence of deformations on the rate of loading were proposed in [4–7] also. In [8] a model was proposed corresponding to a liquid multicomponent medium with a variable viscosity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 34–41, May–June, 1984.  相似文献   

17.
The vaporization of multicomponent fuel droplets was studied experimentally in a heated flow and the results were compared to the model proposed by Abramzon and Sirignano. The droplet was suspended on a permanent holder which was set up in a thermal wind-tunnel. This wind-tunnel was fitted with a video recording system and an infra-red camera. The period during which the droplet was suspended on the holder before the opening of the hot air flow damper was recorded. This first sequence corresponds to the droplet vaporization in natural convection, whose initial experiment conditions, especially diameter, temperature, composition of the droplet, are well known. Then the damper was turn on, and the sequence of forced convection begun. The initial diameter of the droplet was recorded by the video system. The other initial conditions of this second sequence cannot be determined experimentally. The distribution of temperature in the droplet and the surface temperature, the mass fraction distribution in the droplet and the surface mass fraction were unknown. These unknown parameters were determined by coupling our experiment with a model using “the film concept” in natural convection. Experimental results were compared with the calculations and found satisfactory, in natural convection as well as in forced convection initiated by this method. The method was tested in the case of a fuel mixture droplets (heptane–decane) for different initial concentrations and variable durations of the sequence in natural convection.  相似文献   

18.
19.
The purpose of this paper is to study the stability and the behaviour of the dynamics of tank vehicles carrying liquid fuel cargo. Liquid forces and moments due to liquid sloshing is one of the most serious problems strongly related to the instability of tank vehicles. In this paper, a simplified analytical model of liquid sloshing is developed using the Navier–Stokes equations. Simulation results obtained using the full complex Navier–Stokes equations modulated with numerical commercial software are compared to the simplified analytical model. The comparison highlights the validity assumptions used on the analytical model. The results show a good correlation under single or double lane change and turning manoeuvres. In the second part for this paper, a full dynamic vehicle is coupled with the analytical liquid model. This simulation result is compared to a rigid vehicle cargo.  相似文献   

20.
利用NND有限差分格式,发展了一种新的完全隐式的有限体积数值方法,以求解与时间相关的N-S方程.对通过单元体界面的无粘流和粘性流通量均作隐式处理.对绕流钝锥体和不同攻角的气动辅助实验飞行器的高超声速粘性流和化学反应流获得了定常数值解.对流加热率和流场电子密度的计算值与实验数据进行了比较,符合较好,证实了本方法的精确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号