首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new HLLC (Harten-Lax-van leer contact) approximate Riemann solver with the preconditioning technique based on the pseudo-compressibility formulation for numerical simulation of the incompressible viscous flows has been proposed, which follows the HLLC Riemann solver (Harten, Lax and van Leer solver with contact resolution modified by Toro) for the compressible flow system. In the authors' previous work, the preconditioned Roe's Riemann solver is applied to the finite difference discretisation of the inviscid flux for incompressible flows. Although the Roe's Riemann solver is found to be an accurate and robust scheme in various numerical computations, the HLLC Riemann solver is more suitable for the pseudo-compressible Navier--Stokes equations, in which the inviscid flux vector is a non-homogeneous function of degree one of the flow field vector, and however the Roe's solver is restricted to the homogeneous systems. Numerical investigations have been performed in order to demonstrate the efficiency and accuracy of the present procedure in both two- and three-dimensional cases. The present results are found to be in good agreement with the exact solutions, existing numerical results and experimental data.  相似文献   

2.
3.
Restoration of the contact surface in the HLL-Riemann solver   总被引:21,自引:3,他引:21  
The missing contact surface in the approximate Riemann solver of Harten, Lax, and van Leer is restored. This is achieved following the same principles as in the original solver. We also present new ways of obtaining wave-speed estimates. The resulting solver is as accurate and robust as the exact Riemann solver, but it is simpler and computationally more efficient than the latter, particulaly for non-ideal gases. The improved Riemann solver is implemented in the second-order WAF method and tested for one-dimensional problems with exact solutions and for a two-dimensional problem with experimental results.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

4.
In this paper, the extension of an upwind least‐square based meshless solver to high Reynolds number flow is explored, and the properties of the meshless solver are analyzed both theoretically and numerically. Existing works have verified the meshless solver mostly with inviscid flows and low Reynolds number flows, and in this work, we are interested in the behavior of the meshless solver for high Reynolds number flow, especially in the near‐wall region. With both theoretical and numerical analysis, the effects of two parameters on the meshless solver are identified. The first one is the misalignment effect caused by the significantly skewed supporting points, and it is found that the meshless solver still yields accurate prediction. It is a very interesting property and is opposite to the median‐dual control volume based vertex‐centered finite volume method, which is known to give degraded result with stretched triangular/tetrahedral cells in the near‐wall region. The second parameter is the curvature, and according to theoretical analysis, it is found in the region with both large aspect ratio and curvature, and the streamwise residual is less affected; however, the wall‐normal counterpart suffers from accuracy degradation. In this paper, an improved method that uses a meshless solver for the streamwise residual and finite difference for wall‐normal residual is developed. This method is proved to be less sensitive to the curvature and provides improved accuracy. This work presents an understanding of the meshless solver for high Reynolds number flow computation, and the analysis in this paper is verified with a series of numerical experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, an improved axisymmetric lattice Boltzmann flux solver (LBFS) is proposed for simulation of axisymmetric isothermal and thermal flows. This solver globally resolves the axisymmetric Navier-Stokes (N-S) equations through the finite volume strategy and locally reconstructs numerical fluxes with solutions to the lattice Boltzmann equation. Compared with previous axisymmetric LBFS, some novel strategies are adopted in this work to simplify the formulations and improve the accuracy. First, the macroscopic equations are reformulated to reduce the number of source terms and remove spatial derivatives involved in the source terms. Second, the local reconstruction of numerical fluxes utilizes relationships given by the Chapman-Enskog analysis and combines the radial coordinate (r) with the local solution to the standard LB equation. By adopting these two modifications, the present axisymmetric LBFS avoids the fractional-step formulation and the finite-difference approximation adopted in the previous solver, which reduces the complexity of implementation. Moreover, an alternative way of predicting intermediate pressure is proposed, which could effectively fix the inaccurate resolution of the pressure field in previous axisymmetric LBFS. Further extensions are made to enrich the applicability of the present solver in thermal axisymmetric flows. Validations on various benchmark tests are carried out for comprehensive evaluation of the robustness and flexibility of the proposed solver.  相似文献   

6.
An unsteady incompressible Navier–Stokes solver that uses a dual time stepping method combined with spatially high‐order‐accurate finite differences, is developed for large eddy simulation (LES) of turbulent flows. The present solver uses a primitive variable formulation that is based on the artificial compressibility method and various convergence–acceleration techniques are incorporated to efficiently simulate unsteady flows. A localized dynamic subgrid model, which is formulated using the subgrid kinetic energy, is employed for subgrid turbulence modeling. To evaluate the accuracy and the efficiency of the new solver, a posteriori tests for various turbulent flows are carried out and the resulting turbulence statistics are compared with existing experimental and direct numerical simulation (DNS) data. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents the implementation of all‐Mach Roe‐type schemes in a fully implicit CFD solver. Simple 2D cases, such as the flow around inviscid and viscous aerofoils, were used for an initial validation of these methods, along with more challenging computations consisting of the 3D flow around the Model Experiments in Controlled Conditions wind turbine, in parked and rotating conditions. This work is motivated by the increased interest of the wind turbine industry in larger diameter wind turbines where compressibility effects near the blade tips may be important. Instead of using an incompressible flow solver, this paper explores the option of modifying an existing, efficient, compressible flow solver for use at lower Mach numbers. The good performance of the Roe solver and its popularity influenced the selection of schemes for this work. The results suggest that effective all‐Mach solutions are possible with implicit solvers, and the paper defines the implementation of the new fluxes and Jacobian, including an investigation of some numerical parameters, using as platform the Helicopter Multi‐Block solver of Liverpool University. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A complementary set of Reynolds‐averaged Navier–Stokes (RANS) equations has been developed for steady incompressible, turbulent flows. The method is based on the Helmholtz decomposition of the velocity vector field into a viscous and a potential components. In the complementary RANS solver a potential solution coexists with a viscous solution with the purpose of contributing to a fastest decay of the viscous solution in the far field. The proposed complementary RANS equations have been validated for steady laminar and turbulent flows. The computational results show that the complementary RANS solver is able to produce less grid‐dependent solutions than a conventional RANS solver. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The lattice Boltzmann method (LBM) for simulating fluid phases was coupled with the discrete element method (DEM) for studying solid phases to formulate a novel solver for fast discrete particle simulation (DPS) of particle–fluid flows. The fluid hydrodynamics was obtained by solving LBM equations instead of solving the Navier–Stokes equation by the finite volume method (FVM). Interparticle and particle–wall collisions were determined by DEM. The new DPS solver was validated by simulating a three-dimensional gas–solid bubbling fluidized bed. The new solver was found to yield results faster than its FVM–DEM counterpart, with the increase in the domain-averaged gas volume fraction. Additionally, the scalability of the LBM–DEM DPS solver was superior to that of the FVM–DEM DPS solver in parallel computing. Thus, the LBM–DEM DPS solver is highly suitable for use in simulating dilute and large-scale particle–fluid flows.  相似文献   

10.
《力学快报》2022,12(5):100362
When using the projection method (or fractional step method) to solve the incompressible Navier-Stokes equations, the projection step involves solving a large-scale pressure Poisson equation (PPE), which is computationally expensive and time-consuming. In this study, a machine learning based method is proposed to solve the large-scale PPE. An machine learning (ML)-block is used to completely or partially (if not sufficiently accurate) replace the traditional PPE iterative solver thus accelerating the solution of the incompressible Navier-Stokes equations. The ML-block is designed as a multi-scale graph neural network (GNN) framework, in which the original high-resolution graph corresponds to the discrete grids of the solution domain, graphs with the same resolution are connected by graph convolution operation, and graphs with different resolutions are connected by down/up prolongation operation. The well trained ML-block will act as a general-purpose PPE solver for a certain kind of flow problems. The proposed method is verified via solving two-dimensional Kolmogorov flows (Re = 1000 and Re = 5000) with different source terms. On the premise of achieving a specified high precision (ML-block partially replaces the traditional iterative solver), the ML-block provides a better initial iteration value for the traditional iterative solver, which greatly reduces the number of iterations of the traditional iterative solver and speeds up the solution of the PPE. Numerical experiments show that the ML-block has great advantages in accelerating the solving of the Navier-Stokes equations while ensuring high accuracy.  相似文献   

11.
基于动态混合网格的不可压非定常流计算方法   总被引:1,自引:0,他引:1  
鱼类、昆虫等运动速度较低,对它们的数值模拟需要解决不可压问题.虚拟压缩方法通过在连续性方程中加入压强对虚拟时间的偏导数,从而把压力场和速度场耦合起来,解决了不可压缩流的计算问题.基于动态混合网格技术,利用双时间步方法耦合虚拟压缩方法来解决非定常不可压缩流的计算问题.为了加快每一虚拟时间步内的收敛速度,子迭代采用了高效的块LU-SGS方法,并且耦合了基于混合网格的多重网格方法.利用该方法数值模拟了不同雷诺数下的静止圆柱、振荡圆柱的绕流,得到了与实验和他人计算一致的结果.  相似文献   

12.
A multi‐resolution analysis (MRA) is proposed for efficient flow computation with preserving the high‐order numerical accuracy of a conventional solver. In the MRA process, the smoothness of a flow pattern is assessed by the difference between original flow property values, and the values approximated by high‐order interpolating polynomial in decomposition. Insignificant data in smooth region are discarded, and flux computation is performed only where crucial features of a solution exist. The reduction of expensive flow computation improves the overall computational efficiency. In order to maintain the high‐order accuracy, modified thresholding procedure restricts the additional error introduced by the thresholding below the order of accuracy of a conventional solver. The practical applicability of the MRA method is validated in various continuous and discontinuous flow problems. The MRA stably computes the Euler equations for continuous and discontinuous flow problems and maintains the accuracy of a conventional solver. Overall, it substantially enhances the computational efficiency of the conventional third‐order accurate solver. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The G-Scheme is a well established framework for multi-scale adaptive model reduction, whose effectiveness was demonstrated with reference to a number of test models, together with an identification of the critical areas that were in need of further theoretical and computational refinement. In this communication, we report on how we enhanced the solver performance. Two new features involving (i) the criteria to identify the fast and slow subspace dimensions, and (ii) a criterion to decide if and when the reuse of the CSP Basis is feasible without deteriorating the overall performance of the solver, have been proved able to increase significantly the computational efficiency of the solver without sacrificing its accuracy.  相似文献   

14.
This article presents the development and validation of the Superquadric Discrete Element Method (SuperDEM) for non-spherical particle simulation using a superquadric particle method in open-source CFD suite MFiX. A superquadric particle–particle contact algorithm with accelerating and stabilizing strategy was developed. A superquadric particle–arbitrary wall contact algorithm was developed, which enables the simulation in complex geometry. The solver was validated by comparing with experimental data generated in this study or available in the literature. Tests include cylinder contacting with a wall, static packing of M&M chocolate candies in a cylindrical container, static packing of cylinders in a cylindrical container, dynamic angle of repose of cylinders in a rotating drum, and discharging of chocolate candies from a hopper. Besides, MPI parallelization of the solver was implemented and the parallel performance of the solver using MPI was assessed through large-scale simulations of 1 million, 10 million, and 100 million particles on up to 6800 cores, which demonstrates that the SuperDEM solver has great potential for industrial-scale systems simulation.  相似文献   

15.
In this paper we study an extension of Osher's Riemann solver to mixtures of perfect gases whose equation of state is of the form encountered in hypersonic applications. As classically, one needs to compute the Riemann invariants of the system to evaluate Osher's numerical flux. For the case of interest here it is impossible in general to derive simple enough expressions which can lead to an efficient calculation of fluxes. The key point here is the definition of approximate Riemann invariants to alleviate this difficulty. Some of the properties of this new numerical flux are discussed. We give 1D and 2D applications to illustrate the robustness and capability of this new solver. We show by numerical examples that the main properties of Osher's solver are preserved; in particular, no entropy fix is needed even for hypersonic applications.  相似文献   

16.
An unstructured grid-based, parallel free-surface flow solver has been extended to account for sinkage and trim effects in the calculation of steady ship waves. The overall scheme of the solver combines a finite-element, equal-order, projection-type three-dimensional incompressible flow solver with a finite element, two-dimensional advection equation solver for the free surface equation. The sinkage and trim, wave profiles, and wave drag computed using the present approach are in good agreement with experimental measurements for two hull forms at a wide range of Froude numbers. Numerical predictions indicate significant differences between the wave drag for a ship fixed in at-rest position and free to sink and trim, in agreement with experimental observations.  相似文献   

17.
PorAS, a new approximate‐state Riemann solver, is proposed for hyperbolic systems of conservation laws with source terms and porosity. The use of porosity enables a simple representation of urban floodplains by taking into account the global reduction in the exchange sections and storage. The introduction of the porosity coefficient induces modified expressions for the fluxes and source terms in the continuity and momentum equations. The solution is considered to be made of rarefaction waves and is determined using the Riemann invariants. To allow a direct computation of the flux through the computational cells interfaces, the Riemann invariants are expressed as functions of the flux vector. The application of the PorAS solver to the shallow water equations is presented and several computational examples are given for a comparison with the HLLC solver. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we present a general Riemann solver which is applied successfully to compute the Euler equations in fluid dynamics with many complex equations of state (EOS). The solver is based on a splitting method introduced by the authors. We add a linear advection term to the Euler equations in the first step, to make the numerical flux between cells easy to compute. The added linear advection term is thrown off in the second step. It does not need an iterative technique and characteristic wave decomposition for computation. This new solver is designed to permit the construction of high‐order approximations to obtain high‐order Godunov‐type schemes. A number of numerical results show its robustness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper develops a hypersonic aerothermal simulation method for missile slot flow. The finite volume method of structure grid solver is developed for solving Euler and Navier-Stokes equations. The solver includes Park's two temperature model and the air multi-species reaction model. The second-order accuracy TVD numerical method was deduced to compute the hypersonic aeroheating which improves the computational efficiency. Computational results are given to show the high accuracy comparing to the existing experimental data.  相似文献   

20.
An approximate‐state Riemann solver for the solution of hyperbolic systems of conservation laws with source terms is proposed. The formulation is developed under the assumption that the solution is made of rarefaction waves. The solution is determined using the Riemann invariants expressed as functions of the components of the flux vector. This allows the flux vector to be computed directly at the interfaces between the computational cells. The contribution of the source term is taken into account in the governing equations for the Riemann invariants. An application to the water hammer equations and the shallow water equations shows that an appropriate expression of the pressure force at the interface allows the balance with the source terms to be preserved, thus ensuring consistency with the equations to be solved as well as a correct computation of steady‐state flow configurations. Owing to the particular structure of the variable and flux vectors, the expressions of the fluxes are shown to coincide partly with those given by the HLL/HLLC solver. Computational examples show that the approximate‐state solver yields more accurate solutions than the HLL solver in the presence of discontinuous solutions and arbitrary geometries. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号