首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sonic boom focusing phenomenon can be predicted using the solution to the nonlinear Tricomi equation which is a hybrid (hyperbolic‐elliptic) second‐order partial differential equation. In this paper, the hyperbolic conservation law form is derived, which is valid in the entire domain. In this manner, the presence of two regions where the equation behaves differently (hyperbolic in the upper and elliptic in the lower half‐plane) is avoided. On the upper boundary, a new mixed boundary condition for the acoustic pressure is employed. The discretization is carried out using a discontinuous Galerkin (DG) method combined with a Runge–Kutta total‐variation diminishing scheme. The results show the accuracy of DG methods to solve problems involving sharp gradients and discontinuities. Comparisons with analytical results for the linear case, and other numerical results using classical explicit and compact finite difference schemes and weighted essentially non‐oscillatory schemes are included. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We discuss the application of a finite volume method to morphodynamic models on unstructured triangular meshes. The model is based on coupling the shallow water equations for the hydrodynamics with a sediment transport equation for the morphodynamics. The finite volume method is formulated for the quasi‐steady approach and the coupled approach. In the first approach, the steady hydrodynamic state is calculated first and the corresponding water velocity is used in the sediment transport equation to be solved subsequently. The second approach solves the coupled hydrodynamics and sediment transport system within the same time step. The gradient fluxes are discretized using a modified Roe's scheme incorporating the sign of the Jacobian matrix in the morphodynamic system. A well‐balanced discretization is used for the treatment of source terms. We also describe an adaptive procedure in the finite volume method by monitoring the bed–load in the computational domain during its transport process. The method uses unstructured meshes, incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep bed gradients that may form in the approximate solution. Numerical results are shown for a test problem in the evolution of an initially hump‐shaped bed in a squared channel. For the considered morphodynamical regimes, the obtained results point out that the coupled approach performs better than the quasi‐steady approach only when the bed–load rapidly interacts with the hydrodynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper considers the multigrid iterative method applied to the solution of finite difference approximations to a linear second-order self-adjoint elliptic equation. It represents an extension of work by Dinar and Brandt. We compare two methods to obtain fourth-order convergence. The first is local error extrapolation developed by Brandt, the second is iterative improvement developed by Lindberg. This work considers non-separable problems, but only on a rectangular domain with Dirichlet boundary conditions. We consider test cases with non-smooth (i.e. discontinuous second derivatives) as well as smooth solutions. We also apply the multigrid method to an elliptic equation with non-separable coefficients which occurs in a geothermal model. In this case an analysis of the error fails to show any advantage in a fourth-order difference scheme over a second-order scheme. However, we do demonstrate that the multigrid iteration performs well on this problem. Also, this example shows that the multigrid iteration can be combined with iterative improvement to create an efficient fourth-order method for a non-separable elliptic equation which is coupled with a marching equation. Other work has found an advantage in this fourth-order scheme for a similar geothermal model.  相似文献   

5.
An accurate, efficient and robust numerical method for the solution of the section‐averaged De St. Venant equations of open channel flow is presented and discussed. The method consists in a semi‐implicit, finite‐volume discretization of the continuity equation capable to deal with arbitrary cross‐section geometry and in a semi‐implicit, finite‐difference discretization of the momentum equation. By using a proper semi‐Lagrangian discretization of the momentum equation, a highly efficient scheme that is particularly suitable for subcritical regimes is derived. Accurate solutions are obtained in all regimes, except in presence of strong unsteady shocks as in dam‐break cases. By using a suitable upwind, Eulerian discretization of the same equation, instead, a scheme capable of describing accurately also unsteady shocks can be obtained, although this scheme requires to comply with a more restrictive stability condition. The formulation of the two approaches allows a unified implementation and an easy switch between the two. The code is verified in a wide range of idealized test cases, highlighting its accuracy and efficiency characteristics, especially for long time range simulations of subcritical river flow. Finally, a model validation on field data is presented, concerning simulations of a flooding event of the Adige river. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
A new finite element method is developed to simulate time‐dependent viscoelastic shear‐thinning flows characterized by the generalized Oldroyd‐B model. The focus of the algorithm is improved stability through a free‐energy dissipative scheme by using low‐order piecewise‐constant finite element approximations for stress. The algorithm is further modified by incorporating a pressure‐projection method, a DG‐upwinding scheme, a symmetric interior penalty DG method to solve the elliptic pressure‐update equation and a geometric multigrid preconditioner. The improved stability and cost to accuracy is compared when using higher order discontinuous bilinear approximation, where in addition, we consider the influence of a slope limiter for these elements. The algorithm is applied to the 2D start‐up‐driven cavity problem, and the stability of the free energy is illustrated and compared between element choices. An application of the model to modelling blood in small arterioles and channels is considered by simulating pulsatile blood flow through a stenotic arteriole. The individual influences of viscoelasticity and shear‐thinning within the generalized Oldroyd‐B model are investigated by comparing results to the Newtonian, generalized Newtonian and Oldroyd‐B models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, we present a higher‐order finite volume method with a ‘Modified Implicit Pressure Explicit Saturation’ (MIMPES) formulation to model the 2D incompressible and immiscible two‐phase flow of oil and water in heterogeneous and anisotropic porous media. We used a median‐dual vertex‐centered finite volume method with an edge‐based data structure to discretize both, the elliptic pressure and the hyperbolic saturation equations. In the classical IMPES approach, first, the pressure equation is solved implicitly from an initial saturation distribution; then, the velocity field is computed explicitly from the pressure field, and finally, the saturation equation is solved explicitly. This saturation field is then used to re‐compute the pressure field, and the process follows until the end of the simulation is reached. Because of the explicit solution of the saturation equation, severe time restrictions are imposed on the simulation. In order to circumvent this problem, an edge‐based implementation of the MIMPES method of Hurtado and co‐workers was developed. In the MIMPES approach, the pressure equation is solved, and the velocity field is computed less frequently than the saturation field, using the fact that, usually, the velocity field varies slowly throughout the simulation. The solution of the pressure equation is performed using a modification of Crumpton's two‐step approach, which was designed to handle material discontinuity properly. The saturation equation is solved explicitly using an edge‐based implementation of a modified second‐order monotonic upstream scheme for conservation laws type method. Some examples are presented in order to validate the proposed formulation. Our results match quite well with others found in literature. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A fourth‐order accurate solution method for the three‐dimensional Helmholtz equations is described that is based on a compact finite‐difference stencil for the Laplace operator. Similar discretization methods for the Poisson equation have been presented by various researchers for Dirichlet boundary conditions. Here, the complicated issue of imposing Neumann boundary conditions is described in detail. The method is then applied to model Helmholtz problems to verify the accuracy of the discretization method. The implementation of the solution method is also described. The Helmholtz solver is used as the basis for a fourth‐order accurate solver for the incompressible Navier–Stokes equations. Numerical results obtained with this Navier–Stokes solver for the temporal evolution of a three‐dimensional instability in a counter‐rotating vortex pair are discussed. The time‐accurate Navier–Stokes simulations show the resolving properties of the developed discretization method and the correct prediction of the initial growth rate of the three‐dimensional instability in the vortex pair. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents a numerical simulation of steady two‐dimensional channel flow with a partially compliant wall. Navier–Stokes equation is solved using an unstructured finite volume method (FVM). The deformation of the compliant wall is determined by solving a membrane equation using finite difference method (FDM). The membrane equation and Navier–Stokes equation are coupled iteratively to determine the shape of the membrane and the flow field. A spring analogy smoothing technique is applied to the deformed mesh to ensure good mesh quality throughout the computing procedure. Numerical results obtained in the present simulation match well with that in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, flows of liquid crystalline polymers into two‐dimensional thin cavity moulds are simulated. The flows are modelled by Ericksen–Leslie equations of motion in the high viscosity limit. An elliptic pressure equation is derived under Hele–Shaw approximations, and the non‐isothermal natures of the flow are modelled. The equations are solved using the finite‐difference technique. A new boundary‐mapping technique is developed in this study to solve the difficulty in the finite‐difference treatment of arbitrarily shaped boundaries, which possess no natural coordinate system. This new method avoids the difficult mesh control in the body‐fitted mapping process and makes the mapping process easy to implement. It can also solve the problems caused by the uneven distribution of grid nodes in the traditional body‐fitted mapping technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A finite volume incompressible flow solver is presented for three‐dimensional unsteady flows based on an unstructured tetrahedral mesh, with collocation of the flow variables at the cell vertices. The solver is based on the pressure‐correction method, with an explicit prediction step of the momentum equations followed by a Poisson equation for the correction step to enforce continuity. A consistent discretization of the Poisson equation was found to be essential in obtaining a solution. The correction step was solved with the biconjugate gradient stabilized (Bi‐CGSTAB) algorithm coupled with incomplete lower–upper (ILU) preconditioning. Artificial dissipation is used to prevent the formation of instabilities. Flow solutions are presented for a stalling airfoil, vortex shedding past a bridge deck and flow in model alveoli. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
This work is devoted to the application of the super compact finite difference method (SCFDM) and the combined compact finite difference method (CCFDM) for spatial differencing of the spherical shallow water equations in terms of vorticity, divergence, and height. The fourth‐order compact, the sixth‐order and eighth‐order SCFDM, and the sixth‐order and eighth‐order CCFDM schemes are used for the spatial differencing. To advance the solution in time, a semi‐implicit Runge–Kutta method is used. In addition, to control the nonlinear instability, an eighth‐order compact spatial filter is employed. For the numerical solution of the elliptic equations in the problem, a direct hybrid method, which consists of a high‐order compact scheme for spatial differencing in the latitude coordinate and a fast Fourier transform in longitude coordinate, is utilized. The accuracy and convergence rate for all methods are verified against exact analytical solutions. Qualitative and quantitative assessments of the results for an unstable barotropic mid‐latitude zonal jet employed as an initial condition are addressed. It is revealed that the sixth‐order and eighth‐order CCFDMs and SCFDMs lead to a remarkable improvement of the solution over the fourth‐order compact method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A depth‐averaged two‐dimensional model has been developed in the curvilinear co‐ordinate system for free‐surface flow problems. The non‐linear convective terms of the momentum equations are discretized based on the explicit–finite–analytic method with second‐order accuracy in space and first‐order accuracy in time. The other terms of the momentum equations, as well as the mass conservation equation, are discretized by the finite difference method. The discretized governing equations are solved in turn, and iteration in each time step is adopted to guarantee the numerical convergence. The new model has been applied to various flow situations, even for the cases with the presence of sub‐critical and supercritical flows simultaneously or sequentially. Comparisons between the numerical results and the experimental data show that the proposed model is robust with satisfactory accuracy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
This paper details an approach to modelling gas–solid fluidized beds using the two‐fluid granular temperature model. Details concerning the difficulties associated with the boundary conditions, particularly for curved boundaries, are described along with a novel means of obtaining the internal stress of the solid‐phase, in part, by solving an implicit equation. This results in a scheme that is stable even when the solid volume fraction is close to maximum packing. A transient, mixed finite element discretization is used to solve the multi‐phase equations with a discontinuous finite element representation of the granular temperature and continuity equations. A new solution method is proposed to solve the coupled momentum and continuity equations based on Arnoldi iteration. Two fluidized beds are modelled, one in the bubbling regime and the other in the slugging regime. These simulations are compared with experiments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper a semi‐implicit finite difference model for non‐hydrostatic, free‐surface flows is analyzed and discussed. It is shown that the present algorithm is generally more accurate than recently developed models for quasi‐hydrostatic flows. The governing equations are the free‐surface Navier–Stokes equations defined on a general, irregular domain of arbitrary scale. The momentum equations, the incompressibility condition and the equation for the free‐surface are integrated by a semi‐implicit algorithm in such a fashion that the resulting numerical solution is mass conservative and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity and bottom friction. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
A numerical algorithm for the solution of advection–diffusion equation on the surface of a sphere is suggested. The velocity field on a sphere is assumed to be known and non‐divergent. The discretization of advection–diffusion equation in space is carried out with the help of the finite volume method, and the Gauss theorem is applied to each grid cell. For the discretization in time, the symmetrized double‐cycle componentwise splitting method and the Crank–Nicolson scheme are used. The numerical scheme is of second order approximation in space and time, correctly describes the balance of mass of substance in the forced and dissipative discrete system and is unconditionally stable. In the absence of external forcing and dissipation, the total mass and L2‐norm of solution of discrete system is conserved in time. The one‐dimensional periodic problems arising at splitting in the longitudinal direction are solved with Sherman–Morrison's formula and Thomas's algorithm. The one‐dimensional problems arising at splitting in the latitudinal direction are solved by the bordering method that requires a prior determination of the solution at the poles. The resulting linear systems have tridiagonal matrices and are solved by Thomas's algorithm. The suggested method is direct (without iterations) and rapid in realization. It can also be applied to linear and nonlinear diffusion problems, some elliptic problems and adjoint advection–diffusion problems on a sphere. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents new developments of the staggered spline collocation method for cost‐effective solution to the incompressible Navier–Stokes equations. Maximal decoupling of the velocity and the pressure is obtained by using the fractional step method of Gresho and Chan, allowing the solution to sparse elliptic problems only. In order to preserve the high‐accuracy of the B‐spline method, this fractional step scheme is used in association with a sparse approximation to the inverse of the consistent mass matrix. Such an approximation is constructed from local spline interpolation method, and represents a high‐order generalization of the mass‐lumping technique of the finite‐element method. A numerical investigation of the accuracy and the computational efficiency of the resulting semi‐consistent spline collocation schemes is presented. These schemes generate a stable and accurate unsteady Navier–Stokes solver, as assessed by benchmark computations. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A hybrid scheme composed of finite‐volume and finite‐difference methods is introduced for the solution of the Boussinesq equations. While the finite‐volume method with a Riemann solver is applied to the conservative part of the equations, the higher‐order Boussinesq terms are discretized using the finite‐difference scheme. Fourth‐order accuracy in space for the finite‐volume solution is achieved using the MUSCL‐TVD scheme. Within this, four limiters have been tested, of which van‐Leer limiter is found to be the most suitable. The Adams–Basforth third‐order predictor and Adams–Moulton fourth‐order corrector methods are used to obtain fourth‐order accuracy in time. A recently introduced surface gradient technique is employed for the treatment of the bottom slope. A new model ‘HYWAVE’, based on this hybrid solution, has been applied to a number of wave propagation examples, most of which are taken from previous studies. Examples include sinusoidal waves and bi‐chromatic wave propagation in deep water, sinusoidal wave propagation in shallow water and sinusoidal wave propagation from deep to shallow water demonstrating the linear shoaling properties of the model. Finally, sinusoidal wave propagation over a bar is simulated. The results are in good agreement with the theoretical expectations and published experimental results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we firstly apply generalized difference methods to solve a fluid mixture model. The model is usually used to describe the tissue deformations and contains a nonlinear hyperbolic equation and an elliptic equation. Most people have used finite difference methods for solving the elliptic equation and other schemes for solving the hyperbolic equation. It is well known that the accuracy of traditional finite difference method is not high. This may be a serious disadvantage in the fluid mixture model, which describes cell movements and tissue deformations. The numerical methods we propose to improve accuracy are based on generalized Galerkin methods and dual decomposition. By choosing suitable trial function space and test function space, our generalized upwind difference schemes exhibit second‐order convergence in space for smooth problems and can eliminate numerical oscillations for discontinuous problems. Some numerical results are presented to demonstrate the advantages of our methods. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
In this paper, five different algorithms are presented for the simulation of low Mach flows with large temperature variations, based on second‐order central‐difference or fourth‐order compact spatial discretization and a pressure projection‐type method. A semi‐implicit three‐step Runge–Kutta/Crank–Nicolson or second‐order iterative scheme is used for time integration. The different algorithms solve the coupled set of governing scalar equations in a decoupled segregate manner. In the first algorithm, a temperature equation is solved and density is calculated from the equation of state, while the second algorithm advances the density using the differential form of the equation of state. The third algorithm solves the continuity equation and the fourth algorithm solves both the continuity and enthalpy equation in conservative form. An iterative decoupled algorithm is also proposed, which allows the computation of the fully coupled solution. All five algorithms solve the momentum equation in conservative form and use a constant‐ or variable‐coefficient Poisson equation for the pressure. The efficiency of the fourth‐order compact scheme and the performances of the decoupling algorithms are demonstrated in three flow problems with large temperature variations: non‐Boussinesq natural convection, channel flow instability, flame–vortex interaction. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号