首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The aggregation behavior of a cationic lipid, N‐[6‐amino‐1‐oxo‐1‐(N‐tetradecylamino)hexan‐(2S)‐2‐yl]‐N′‐{2‐[N,N‐bis(2‐aminoethyl)amino]ethyl}‐2,2‐ditetradecylpropandiamide (DiTT4), is investigated in aqueous dispersions at different pH values (5, 7.3, and 10). An unusual aggregation behavior is observed whereby DiTT4 forms bilayer structures at pH 10 and 7.3. At pH 5, rod‐like micelles are the dominant aggregate form. The thermotropic and lyotropic behavior is studied using differential scanning calorimetry, small‐angle X‐ray scattering, and FTIR spectroscopy. In addition, investigations at the air–water interface are performed by recording area–pressure‐isotherms and infrared reflection–absorption (IRRA) spectra. Complementary dynamic light scattering experiments and transmission electron microscopy (TEM and cryoTEM) are also used. The ability of DiTT4 to complex plasmid DNA is investigated using fluorescence techniques and zeta potential measurements. Cell culture experiments demonstrate the ability of DiTT4 to enhance plasmid transfer in A549 cells.  相似文献   

5.
6.
Solvothermal syntheses of copper‐indium‐sulfides performed with different Cu:In:S ratios afforded crystallization of nanocrystalline Cu‐In‐S phases with compositions close to CuInS2, CuIn3S5, and CuIn7S11. Each sample shows a different and distinguishable morphology. The minority component CuInS2 with wurtzite‐type structure crystallizes as thin plates, which are preferably stacked parallel to black stacks. The component with composition CuIn3S5 forms isolated few nm thin layers being arranged like the petals of a flower growing from a common point. Finally, red CuIn7S11 is obtained as nanobelts with individual diameters of about 20 nm and lengths up to more than 1 μm. According to electron diffraction patterns and X‐ray diffractometry the structures of CuIn3S5 and CuIn7S11 cannot be assigned to known bulk phases of the Cu‐In‐S system, however first structure models are proposed.  相似文献   

7.
Water surrounded by hydrophobic interfaces affects a variety of chemical reactions and biological activities. Carbon nanotubes (CNTs) can be used to investigate the behavior of water at hydrophobic interfaces. Here, we determined the fundamental unit of water by evaluating the ice‐like cluster formation of water in the limited hydrophobic nanospaces of CNTs, using X‐ray diffraction and molecular simulation analysis. The water in CNTs with a diameter of 1 nm had fewer hydrogen bonds than bulk water under ambient conditions. In CNTs with diameters of 2 and 3 nm, water formed nanoclusters even under ambient conditions, because of prolific hydrogen bonding; predominant ice‐like cluster formation was induced in the 2–3 nm nanospaces. The results confirming the cluster formation in the CNTs also demonstrated that the critical cluster size was 0.8–3.4 nm. The fundamental cluster size was 0.8 nm; these results indicated that 0.8 nm clusters are the fundamental units of water assemblies.  相似文献   

8.
A tetrathiafulvalene (TTF)‐conjugated bistetracene was synthesized and characterized in the molecular electronic structures based on the spectroscopic measurements and the single‐crystal X‐ray diffraction analysis. UV/Vis absorption and electrochemical measurements of 5 revealed the considerable electronic communication between two tetracenedithiole units by through‐bond and/or through‐space interactions. The difference in the crystal‐packing structures of 5 , showing polymorphism, results in a variety of intermolecular electronic‐coupling pattern. Of these, the π‐stacking structure of 5 A gave a large transfer integral of HOMOs (97 meV), which value is beyond hexacene and rubrene, thus, quite beneficial to achieve the high hole mobility.  相似文献   

9.
10.
In this contribution, the synthesis and full structural and spectroscopic characterization of five bis‐1,2,4‐triazoles in combination with different energetic moieties like amino, nitro, nitrimino, azido, and dinitromethylene groups is presented. The main goal is a comparative study on the influence of those energetic moieties on the structural and energetic properties. A complete characterization including IR, Raman, and multinuclear NMR spectroscopy of all compounds is presented. Additionally, X‐ray crystallographic measurements were performed and deliver insight into structural characteristics as well as inter‐ and intramolecular interactions. The standard enthalpies of formation were calculated for all compounds at the CBS‐4M level of theory, the detonation parameters were calculated by using the EXPLO5.05 program. Additionally, the impact as well as the friction sensitivities and the sensitivity against electrostatic discharge were determined. The potential application of the synthesized compounds as energetic material will be studied and evaluated by using the experimentally obtained values for the thermal decomposition, the sensitivity data, and the calculated performance characteristics.  相似文献   

11.
Reaction of DyCl3 with two equivalents of NaN(SiMe3)2 in THF yielded {Dy(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 1 ). X‐ray crystal structure analysis revealed that 1 is a centrosymmetric dimer with asymmetrically bridging chloride ligands. The metal coordination arrangement can be best described as distorted trigonal bipyramid. The bond lengths of Ln–Cl and Ln–N showed a decreasing trend with the contraction of the size of Ln3+. Treatment of N,N‐bis(pyrrolyl‐α‐methyl)‐N‐methylamine (H2dpma) with 1 and known compound {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2, respectively, led to the formations of [Dy(μ‐Cl)(dpma)(THF)2]2 ( 2 ) and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 ( 3 ). Compounds 2 and 3 were fully characterized by single‐crystal X‐ray crystallography, elemental analysis, and 1H NMR spectroscopy. Structure determination indicated that 2 and 3 exhibit as centrosymmetric dimers with asymmetrically bridging chloride ligands. One pot reactions involving LnCl3 (Ln = Dy and Yb), LiN(SiMe3)2, and H2dpma were explored and desired products 2 and 3 were not yielded, which indicated that 1 and {Yb(μ‐Cl)[N(SiMe3)2]2(THF)}2 are the demanding precursors to synthesize Dysprosium and Ytterbium complexes supported by dpma2– ligand. Compounds 2 and 3 are the first reported lanthanide complexes chelated by dpma2– ligand.  相似文献   

12.
The combination of two analytical methods including time‐resolved in situ X‐ray diffraction (XRD) and Raman spectroscopy provides a new opportunity for a detailed analysis of the key mechanisms of milling reactions. To prove the general applicability of our setup, we investigated the mechanochemical synthesis of four archetypical model compounds, ranging from 3D frameworks through layered structures to organic molecular compounds. The reaction mechanism for each model compound could be elucidated. The results clearly show the unique advantage of the combination of XRD and Raman spectroscopy because of the different information content and dynamic range of both individual methods. The specific combination allows to study milling processes comprehensively on the level of the molecular and crystalline structures and thus obtaining reliable data for mechanistic studies.  相似文献   

13.
Herein, we report the syntheses of silicon‐ and tin‐containing open‐chain and eight‐membered‐ring compounds Me2Si(CH2SnMe2X)2 ( 2 , X=Me; 3 , X=Cl; 4 , X=F), CH2(SnMe2CH2I)2 ( 7 ), CH2(SnMe2CH2Cl)2 ( 8 ), cyclo‐Me2Sn(CH2SnMe2CH2)2SiMe2 ( 6 ), cyclo‐(Me2SnCH2)4 ( 9 ), cyclo‐Me(2?n)XnSn(CH2SiMe2CH2)2SnXnMe(2?n) ( 5 , n=0; 10 , n = 1, X= Cl; 11 , n=1, X= F; 12 , n=2, X= Cl), and the chloride and fluoride complexes NEt4[cyclo‐ Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?F] ( 13 ), PPh4[cyclo‐Me(Cl)Sn(CH2SiMe2CH2)2Sn(Cl)Me?Cl] ( 14 ), NEt4[cyclo‐Me(F)Sn(CH2SiMe2CH2)2Sn(F)Me?F] ( 15 ), [NEt4]2[cyclo‐Cl2Sn(CH2SiMe2CH2)2SnCl2?2 Cl] ( 16 ), M[Me2Si(CH2Sn(Cl)Me2)2?Cl] ( 17 a , M=PPh4; 17 b , M=NEt4), NEt4[Me2Si(CH2Sn(Cl)Me2)2?F] ( 18 ), NEt4[Me2Si(CH2Sn(F)Me2)2?F] ( 19 ), and PPh4[Me2Si(CH2Sn(Cl)Me2)2?Br] ( 20 ). The compounds were characterised by electrospray mass‐spectrometric, IR and 1H, 13C, 19F, 29Si, and 119Sn NMR spectroscopic analysis, and, except for 15 and 18 , single‐crystal X‐ray diffraction studies.  相似文献   

14.
A series of eight 1‐halo‐8‐(alkylchalcogeno)naphthalene derivatives ( 1 – 8 ; halogen=Br, I; alkylchalcogen=SEt, SPh, SePh, TePh) containing a halogen and a chalcogen atom occupying the peri positions have been prepared and fully characterised by using X‐ray crystallography, multinuclear NMR spectroscopy, IR spectroscopy and MS. Naphthalene distortion due to non‐covalent substituent interactions was studied as a function of the bulk of the interacting chalcogen atoms and the size and nature of the alkyl group attached to them. X‐ray data for 1 , 2 , 4 and 5 – 8 were compared. Molecular structures were analysed in terms of naphthalene ring torsions, peri‐atom displacement, splay angle magnitude, X???E interactions, aromatic ring orientations and quasi‐linear X???E? C arrangements. A general increase in the X???E distance was observed for molecules that contain bulkier atoms at the peri positions. The I???S distance of 4 is comparable with the I???Te distance of 8 , and is ascribed to a stronger lone pair–lone pair repulsion due to the presence of an axial S(naphthyl) ring conformation. Density functional theory (B3LYP) calculations performed on 5 – 8 revealed Wiberg bond index values of 0.05–0.08, which indicate minor interactions taking place between the non‐bonded atoms in these compounds.  相似文献   

15.
48 new hydrogen‐bonded complexes have been prepared by combining 16 fluorophenols of general formula C6FnH5?nOH with three different alkoxystilbazoles (butyloxy‐, octyloxy‐ and dodecyloxy‐). Single‐crystal X‐ray structures were obtained for 10 of the 16 complexes of octyloxystilbazole from which it was found that most of the structures could be collected into one of two groups according to both the motif shown by the complex and by the solid‐state packing. Because all but one crystallised in the P$\bar 1$ space group, meaningful comparisons could be drawn and it was observed that six structures were extremely close in nature so that significant molecular overlap was found. On this basis, doubt is cast on the significance of some of the weaker intermolecular contacts found in the solid state. 40 of the new complexes showed liquid‐crystal properties and it was found that although complexes of butyloxystilbazole were all nematic, almost all of those with dodecyloxystilbazole showed a smectic A (SmA) phase. Complexes of octyloxystilbazole showed a mixture of both. Structure/property correlations showed that clearing points were independent of the pKa of the phenol. The most stable mesophases were found when the fluorophenol contained a fluorine at the 2‐position, which was interpreted in terms of the formation of an intramolecular H???F hydrogen bond to give a six‐membered ring linking the two components into a stable, coplanar conformation. The least stable mesophases were found when no such ring formation was possible and the phenol was relatively free to move.  相似文献   

16.
The reaction of organomercury(II) halogenides (RHgHal, Hal = Cl, I) with silver azide furnished the corresponding covalent organomercury(II) azides RHgN3 (R = Me ( 1 ), tBu ( 2 ), Ph ( 3 )). In addition to the characterization by multinuclear NMR spectroscopy, IR and Raman spectroscopy as well as mass spectrometry, the mercury content was determined. A dependance on the solventpolarity for the 14N NMR resonances was observed. Furthermore, X‐ray diffraction studies were performed and the crystal structures for mercury(II) azides 1 – 3 are reported. A comparison of the bond lengths and angles with data from theoretical calculations is given.  相似文献   

17.
Helical structures are interesting due to their inherent chirality. Helicenium ions are triarylmethylium structures twisted into configurationally stable helicenes through the introduction of two heteroatom bridges between the three aryl substituents. Of the configurationally stable [4]helicenium ions, derivatives with sulfur, oxygen and nitrogen bridges have already been synthesised. However, one [4]helicenium ion has proven elusive, until now. We present herein the first synthesis of the 1,13‐dimethoxychromeno[2,3,4‐kl]acridinium (DMCA+) [4]helicenium ion. A series of six differently N‐substituted DMCA+ ions as their hexafluorophosphate salts are reported. Their cation stability was evaluated and it was found that DMCA+ is ideally suited as a phase‐transfer catalyst with a pKR+ of 13.0. The selectivity of nucleophilic addition to the central carbon atom of DMCA+ has been demonstrated with diastereotopic ratios of up to 1:10. The single‐crystal structures of several of the DMCA+ salts were determined, and structural differences between N‐aryl‐ and N‐alkyl‐substituted cations were observed. The results of a comparative study of the photophysics of the [4]helicenium ions are presented. DMCA+ is found to be a potent red‐emitting dye with a fluorescence quantum yield of 20 % in apolar solvents and a fluorescence lifetime of 12 ns. [4]Helicenium ions, including DMCA+, all suffer from solvent‐induced quenching, which reduces the fluorescence quantum yields significantly (?fl<5 %) in polar solvents. A difference in photophysical properties is observed between N‐aryl‐ and N‐alkyl‐substituted DMCA+, which has tentatively been attributed to a difference in molecular conformation.  相似文献   

18.
2,4‐Trifluoromethylquinoline (TFMAQ) derivatives that have amine ( 1 ), methylamine ( 2 ), phenylamine ( 3 ), and dimethylamine ( 4 ) substituents at the 7‐position of the quinoline ring were prepared and crystallized. Six crystals including the crystal polymorphs of 2 (crystal GB and YG) and 3 (crystal B and G) were obtained and characterized by X‐ray crystallography. In solution, TFMAQ derivatives emitted relatively strong fluorescence (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =418–469 nm and Φf(s)=0.23–0.60) depending on the solvent polarity. From Lippert–Mataga plots, Δμ values in the range of 7.8–14 D were obtained. In the crystalline state, TFMAQ derivatives emitted at longer wavelengths (${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464–530 nm) with lower intensity (Φf(c)=0.01–0.28) than those in n‐hexane solution. The polymorphous crystals of 2 and 3 emitted different colors: 2 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =470 and 530 nm with Φf(c)=0.04 and approximately 0.01 for crystal GB and YG, respectively; and 3 , ${\lambda {{{\rm f}\hfill \atop {\rm max}\hfill}}}$ =464 and 506 nm with Φf(c)=0.28 and approximately 0.28 for crystal B and G, respectively. In both crystal polymorphs of 2 and 3 , crystals GB and G showed emission color changes by heating/melting/cooling cycles that were representative. By following the color changes in heating at the temperature below the melting point with X‐ray diffraction measurements and X‐ray crystallography, the single‐crystal‐to‐single‐crystal transformations from crystal GB to YG for 2 and from crystal B to G for 3 were revealed.  相似文献   

19.
Two copper(I) complexes of compositions [Cu(HL)I]2 · EtOH ( 1 ) and [Cu(HL)3]I · MeOH ( 2 ) were synthesized via the reactions of HL [HL = 2(4,5‐diphenyl‐1H‐imidazol‐2‐yl)pyridine] and CuI in EtOH and MeOH, respectively, under solvothermal conditions. The complexes were characterized by X‐ray single crystal diffraction, IR spectroscopy, and elemental analysis. Compounds 1 and 2 are catalytically active towards ketalization reaction, giving various ketals under mild conditions.  相似文献   

20.
Solid solution phases Li7‐2xMgx[VN4] (0 < x ≤ 1) with varying Mg‐content are obtained as yellow microcrystalline powders from heat treatment of mixtures of VN, Li3N and Mg3N2 or from mixtures of Li7[VN4] and Mg3N2 at 1370 K in N2 atmosphere at ambient pressure. At substitution parameter values of x > 0.5 a subsequent distortion from the ideal cubic unit cell to an orthorhombic unit cell is observed. The crystal structure of Li7‐2xMgx[VN4] with x ≈ 1 was refined from neutron and X‐ray powder diffraction data (space group Pbca, No. 61, a = 963.03(3) pm, b = 958.44(3) pm, c = 951.93(2) pm, neutron pattern 14° — 156° 2θ, step non‐linear ≈ 0.0782° 2θ, No. of measured points 1816, Rp = 0.089, Rwp = 0.115, RBragg = 0.155, RF = 0.114; X‐ray pattern 10° — 98° 2θ, step 0.005° 2θ, No. of measured points 17600, Rp = 0.028, Rwp = 0.045, RBragg = 0.113, RF = 0.133, structure variables: 45). The crystal structure resembles a Li2O type superstructure with the atomic arrangement of β‐Li7[VN4] and with two crystallographic Li‐sites each substituted by Mg with statistical occupation factors of 0.5. Chemical analyses prove the composition and XAS spectroscopy at the V K‐edge support the +5 oxidation state assignment for vanadium. XAS data also support the tetrahedral coordination of vanadium by N as indicated by the structure refinements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号