首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用拟压缩性方法和Jameson的有限体积算法求解了二维和三维定常可可压Euler方程。分别采用显、隐式时间离散推进求解;分析了人工粘性的阶数对定常解收敛性的影响,应用该方法计算了单个翼型和翼身组合体的低速绕流,结果与实验吻合较好。  相似文献   

2.
This paper proposes a new kinetic-theory-based high-resolution scheme for the Euler equations of gas dynamics. The scheme uses the well-known connection that the Euler equations are suitable moments of the collisionless Boltzmann equation of kinetic theory. The collisionless Boltzmann equation is discretized using Sweby's flux-limited method and the moment of this Boltzmann level formulation gives a Euler level scheme. It is demonstrated how conventional limiters and an extremum-preserving limiter can be adapted for use in the scheme to achieve a desired effect. A simple total variation diminishing criteria relaxing parameter results in improving the resolution of the discontinuities in a significant way. A 1D scheme is formulated first and an extension to 2D on Cartesian meshes is carried out next. Accuracy analysis suggests that the scheme achieves between first- and second-order accuracy as is expected for any second-order flux-limited method. The simplicity and the explicit form of the conservative numerical fluxes add to the efficiency of the scheme. Several standard 1D and 2D test problems are solved to demonstrate the robustness and accuracy.  相似文献   

3.
Newton's method is developed for solving the 2‐D Euler equations. The Euler equations are discretized using a finite‐volume method with upwind flux splitting schemes. Both analytical and numerical methods are used for Jacobian calculations. Although the numerical method has the advantage of keeping the Jacobian consistent with the numerical residual vector and avoiding extremely complex analytical differentiations, it may have accuracy problems and need longer execution time. In order to improve the accuracy of numerical Jacobians, detailed error analyses are performed. Results show that the finite‐difference perturbation magnitude and computer precision are the most important parameters that affect the accuracy of numerical Jacobians. A method is developed for calculating an optimal perturbation magnitude that can minimize the error in numerical Jacobians. The accuracy of the numerical Jacobians is improved significantly by using the optimal perturbation magnitude. The effects of the accuracy of numerical Jacobians on the convergence of the flow solver are also investigated. In order to reduce the execution time for numerical Jacobian evaluation, flux vectors with perturbed flow variables are calculated only for neighbouring cells. A sparse matrix solver that is based on LU factorization is used. Effects of different flux splitting methods and higher‐order discretizations on the performance of the solver are analysed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the runoff on the urban surface modeled by shallow‐water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests, we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a preconditioning technique for solving a two‐dimensional system of hyperbolic equations. The main attractive feature of this approach is that, unlike a technique based on simply extending the solver for a one‐dimensional hyperbolic system, convergence and stability analysis can be investigated. This method represents a genuine numerical algorithm for multi‐dimensional hyperbolic systems. In order to demonstrate the effectiveness of this approach, applications to solving a two‐dimensional system of Euler equations in supersonic flows are reported. It is shown that the Lax–Friedrichs scheme diverges when applied to the original Euler equations. However, convergence is achieved when the same numerical scheme is employed using the same CFL number to solve the equivalent preconditioned Euler system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A time-marching finite volume numerical procedure is presented for three-dimensional Euler analysis of turbomachinery flows. The proposed scheme is applied to the conservative form of the Euler equations written in general curvilinear co-ordinates. A simple but computationally efficient grid is constructed. Numerical solution results for three 3D turbine cascade flows have been presented and compared with available measurements as well as with another state-of-the-art 3D Euler analysis numerical solution in order to demonstrate the accuracy and computational efficiency of the analysis method. Also, the predicted results are compared with a 3D potential flow solver and comparison is made with the analytical solution. The proposed method is an accurate and reliable technique for solving the compressible flow equations in turbomachinery geometries.  相似文献   

8.
In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The model is based on a three‐energy‐level and three‐speed lattice Boltzmann equation by using a method of higher moments of the equilibrium distribution functions. In order to obtain second‐order accuracy, we employ the ghost field distribution functions to remove the non‐physical viscous parts. We also use the conditions of the higher moment of the ghost field equilibrium distribution functions to obtain the equilibrium distribution functions. In the numerical examples, we compare the numerical results of this scheme with those obtained by other lattice Boltzmann models for the compressible Euler equations. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
将结构动力学领域的\theta_1方法拓展到数值求解多体系统运动方程------微分--代数方 程(DAEs), 分别求解指标-3 DAEs形式的运动方程和指标-2超定DAEs (ODAEs)形式的运动方程. 通过数值算例验证了方法的有效性, 并得到\theta _1 方法中参数\theta _1的选取与数值耗散量之间的关系. 数值算例还说明对于同 一个多体系统, 采用指标-3的DAEs 描述时存在速度违约, 用指标-2的ODAEs描述时, 从计算机精度上讲, 位置和速度约束方程 同时满足, 并且\theta_1方法在求解非保守系统DAEs和ODAEs形式的运动方程时 都具有2阶精度. 最后\theta_1 方法与其他直接积分法求解DAEs和ODAEs形式运 动方程的CPU时间进行了比较.  相似文献   

10.
The dynamics of a mixture of impurities in a gas can be represented by a system of linear Boltzmann equations for hard spheres. We assume that the background is in thermodynamic equilibrium and that the polluting particles are sufficiently few (in comparison with the background molecules) to admit that there are no collisions among couples of them. In order to derive non‐trivial hydrodynamic models, we close the Euler system around local Maxwellian's which are not equilibrium states. The kinetic model is solved by using a Monte Carlo method, the hydrodynamic one by implicit–explicit Runge–Kutta schemes with weighted essentially non‐oscillatory reconstruction (J. Sci. Comput. 2005; 25 (1–2):129–155). Several numerical tests are then computed in order to compare the results obtained with the kinetic and the hydrodynamic models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A third‐order mesh generation and adaptation method is presented for solving the steady compressible Euler equations. For interior points, a third‐order scheme is used on Cartesian and curvilinear meshes. Concerning the mesh adaptation, the method of Meakin is also extended to third order. The accuracy of the new overset mesh adaptation method is demonstrated by a grid convergence study for 2‐D inviscid model problems and results are compared with a second‐order method. Finally, the method is applied to the computation of an inviscid 3‐D flow around a hovering blade of the ONERA 7A helicopter rotor exhibiting an improvement in the wake capture. With a 7 million point mesh, the tip vortex can be followed for more than three rotor revolutions with the third‐order method. The CPU time needed for this calculation is only 3% higher than with a conventional second‐order method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Lie symmetry method is applied to analyze a nonlinear elastic wave equation for longitudinal deformations with third-order anharmonic corrections to the elastic energy. Symmetry algebra is found and reductions to second-order ordinary differential equations (ODEs) are obtained through invariance under different symmetries. The reduced ODEs are further analyzed to obtain several exact solutions in an explicit form. It was observed in the literature that anharmonic corrections generally lead to solutions with time-dependent singularities in finite times singularities, we also obtain solutions which Along with solutions with time-dependent do not exhibit time-dependent singularities.  相似文献   

13.
A fast, matrix-free implicit method has been developed to solve low Mach number flow problems on unstructured grids. The preconditioned compressible Euler and Navier-Stokes equations are integrated in time using a linearized implicit scheme. A newly developed fast, matrix-free implicit method, GMRES + LU?SGS, is then applied to solve the resultant system of linear equations. A variety of computations has been made for a wide range of flow conditions, for both in viscid and viscous flows, in both 2D and 3D to validate the developed method and to evaluate the effectiveness of the GMRES + LU?SGS method. The numerical results obtained indicate that the use of the GMRES + LU?SGS method leads to a significant increase in performance over the LU?SGS method, while maintaining memory requirements similar to its explicit counterpart. An overall speedup factor from one to more than two order of magnitude for all test cases in comparison with the explicit method is demonstrated.  相似文献   

14.
In this paper, we present a general Riemann solver which is applied successfully to compute the Euler equations in fluid dynamics with many complex equations of state (EOS). The solver is based on a splitting method introduced by the authors. We add a linear advection term to the Euler equations in the first step, to make the numerical flux between cells easy to compute. The added linear advection term is thrown off in the second step. It does not need an iterative technique and characteristic wave decomposition for computation. This new solver is designed to permit the construction of high‐order approximations to obtain high‐order Godunov‐type schemes. A number of numerical results show its robustness. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
A high-order accurate explicit scheme is proposed for solving Euler/Reynolds-averaged Navier-Stokes equations for steady and unsteady flows, respectively. Baldwin-Lomax turbulence model is utilized to obtain the turbulent viscosity. For the explicit scheme, the Runge-Kutta time-stepping methods of third orders are used in time integration, and space discretization for the right-hand side (RHS) terms of semi-discrete equations is performed by third-order ENN scheme for inviscid terms and fourth-order compact difference for viscous terms. Numerical experiments suggest that the present scheme not only has a fairly rapid convergence rate, but also can generate a highly resolved approximation to numerical solution, even to unsteady problem. The project supported by the National Natural Science Foundation of China under Contract No. 59576007 and 19572038  相似文献   

16.
A new numerical method for particle tracking (Lagrangian particle advection) on 2‐D unstructured grids with triangular cells is presented and tested. This method combines key attributes of published methods, including streamline closure for steady flows and local mass conservation (uniformity preservation). The subgrid‐scale velocity reconstruction is linear, and this linear velocity field is integrated analytically to obtain particle trajectories. A complete analytic solution to the 2‐D system of ordinary differential equations (ODEs) governing particle trajectories within a grid cell is provided. The analytic solution to the linear system of locally mass‐conserving constraints that must be enforced to obtain the coefficients in the ODEs is also provided. Numerical experiments are performed to demonstrate that the new method has substantial advantages in accuracy over previously published methods and that it does not suffer from unphysical particle clustering. The method can be used not only in particle‐tracking applications but also as part of a semi‐Lagrangian advection scheme.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds‐averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non‐diffusive, time‐ and space‐staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, a comparison between the 1D and 2D numerical simulation of transitional flow in open‐channel networks is presented and completely described allowing for a full comprehension of the modeling water flow. For flow in an open‐channel network, mutual effects exist among the channel branches joining at a junction. Therefore, for the 1D study, the whole system (branches and junction) cannot be treated individually. The 1D Saint Venant equations calculating the flow in the branches are then supplemented by various equations used at the junction: a discharge flow conservation equation between the branches arriving and leaving the junction, and a momentum or energy conservation equation. The disadvantages of the 1D study are that the equations used at the junction are of empirical nature due to certain parameters given by experimental results and moreover they often present a reduced field of validity. On the contrary, for the 2D study, the entire network is considered as a single unit and the flow in all the branches and junctions is solved simultaneously. Therefore, we simply apply the 2D Saint Venant equations, which are solved by a second‐order Runge–Kutta discontinuous Galerkin method. Finally, the experimental results obtained by Hager are used to validate and to compare the two approaches 1D and 2D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
The meshless Petrov–Galerkin method (MLPG) is applied to plate bending analysis in 1D orthorhombic quasicrystals (QCs) under static and transient dynamic loads. The Bak and elasto-hydrodynamic models are applied for phason governing equation in the elastodynamic case. The phason displacement for the orthorhombic QC in the first-order shear deformation plate theory depends only on the in-plane coordinates on the mean plate surface. Nodal points are randomly distributed over the mean surface of the considered plate. Each node is the center of a circle surrounding this node. The coupled governing partial differential equations are satisfied in a weak-form on small fictitious subdomains. The spatial variations of the phonon and phason displacements are approximated by the moving least-squares (MLS) scheme. After performing the spatial MLS approximation, a system of ordinary differential equations (ODEs) for nodal unknowns is obtained. The system of the ODEs of the second order is solved by the Houbolt finite-difference scheme. Our numerical examples demonstrate clearly the effect of the coupling parameter on both static and dynamic phonon/phason deflections.  相似文献   

20.
Ge  T.  Leung  A. Y. T. 《Nonlinear dynamics》1998,15(3):283-305
The invariant torus is a very important case in the study of nonlinear autonomous systems governed by ordinary differential equations (ODEs). In this paper a new numerical method is provided to approximate the multi-periodic surface formed by an invariant torus by embedding the governing ODEs onto a set of partial differential equations (PDEs). A new characteristic approach to determine the stability of resultant periodic surface is also developed. A system with two strongly coupled van der Pol oscillators is taken as an illustrative example. The result shows that the Toeplitz Jacobian Matrix/Fast Fourier Transform (TJM/FFT) approach introduced previously is accurate and efficient in this application. The application of the method to normal multi-modes of nonlinear Euler beam is given in [1].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号