首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work a finite‐difference technique is developed for the implementation of a new method proposed by Aristov and Pukhnachev (Doklady Phys. 2004; 49 (2):112–115) for modeling of the axisymmetric viscous incompressible fluid flows. A new function is introduced that is related to the pressure and a system similar to the vorticity/stream function formulation is derived for the cross‐flow. This system is coupled to an equation for the azimuthal velocity component. The scheme and the algorithm treat the equations for the cross‐flow as an inextricably coupled system, which allows one to satisfy two conditions for the stream function with no condition on the auxiliary function. The issue of singularity of the matrix is tackled by adding a small parameter in the boundary conditions. The scheme is thoroughly validated on grids with different resolutions. The new numerical tool is applied to the Taylor flow between concentric rotating cylinders when the upper and lower lids are allowed to rotate independently from the inner cylinder, while the outer cylinder is held at rest. The phenomenology of this flow is adequately represented by the numerical model, including the hysteresis that takes place near certain specific values of the Reynolds number. Thus, the present results can be construed to demonstrate the viability of the new model. The success can be attributed to the adequate physical nature of the auxiliary function. The proposed technique can be used in the future for in‐depth investigations of the bifurcation phenomena in rotating flows. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
黏性不可压缩流体流动前沿的数值模拟   总被引:1,自引:0,他引:1  
曹伟 《力学学报》2004,36(5):583-588
提出了模拟注射成型中黏性、不可压缩流体流动前沿的新方法. 将Hele-Shaw流动应用于非 等温条件下的黏性、不可压缩流体,建立了流动分析模型,用充填因子的输运方程描述流动 前沿. 应用高阶Taylor展开式计算每一时间步长的充填因子,用Galerkin方法导出了计算 充填因子各阶导数的递推公式. 给出了时间增量的选取方法,证明了它的稳定性. 针对Han 设计的试验模具,用相同的材料及工艺条件模拟充填过程,比较了传统方法和该方法的模 拟结果与实验结果的差异. 算例分析表明,该方法可以有效地提高注射成型中流动前沿的 模拟精度和计算效率.  相似文献   

3.
Plane nonlinear fluid flows through a porous medium which simulate a sink located at the same distance from the roof and floor of the stratum for two nonlinear flow laws are constructed. The following flow laws are taken: a power law and a law of special form reducing to analytic functions in the hodograph plane.  相似文献   

4.
A two‐dimensional inviscid incompressible flow in a rectilinear channel of finite length is studied numerically. Both the normal velocity and the vorticity are given at the inlet, and only the normal velocity is specified at the outlet. The flow is described in terms of the stream function and vorticity. To solve the unsteady problem numerically, we propose a version of the vortex particle method. The vorticity field is approximated using its values at a set of fluid particles. A pseudo‐symplectic integrator is employed to solve the system of ordinary differential equations governing the motion of fluid particles. The stream function is computed using the Galerkin method. Unsteady flows developing from an initial perturbation in the form of an elliptical patch of vorticity are calculated for various values of the volume flux of fluid through the channel. It is shown that if the flux of fluid is large, the initial vortex patch is washed out of the channel, and when the flux is reduced, the initial perturbation evolves to a steady flow with stagnation regions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The governing equations for axially symmetric flow, where the Reynolds stresses are expressed by scalar turbulent viscosity, are the Reynolds equations. The turbulence model k, ? is used in the well-known form for fully developed turbulent flow.The numerical method, a continuation of the MAC system1, is adapted so that even for high Reynolds cell numbers precision (δx2) can be achieved for the steady flow. Irregular cells join the rectangular network on the curved surface. Von Neumann's stability condition of the linearised numerical system is investigated. Special problems concerning the numerical solution of the turbulence model equations are stated and a special procedure is worked out to ensure that the fields k, ? do not converge to physically meaningless values. The program for the computer is universal in that the boundary problems can be assigned by input data.As an example, an axially symmetrical diffuser with an area ratio of widening 1.40 is computed. Fields of velocity and pressure at the wall as well as fields vT and k are assessed. The results are compared with an experiment. The conclusion is that this method is suitable for the problems mentioned in this study as well as for unsteady flow.  相似文献   

6.
This paper presents first results of numerical simulation of turbulent free-surface flow. Simple implementation of surface capturing method is based on the variable density approach. The flow is treated as if there is only one fluid, but with variable material properties (density, viscosity). The switch in these values is done by a function resulting from the mass conservation principle. This approach simplifies the implementation of turbulence model. In this case the SST k−ω model was chosen in modification given by Hellsten.Numerical solution was carried out by finite-volume method with explicit Runge-Kutta time-integration. The artificial compressibility method was used for time-marching search for steady state solution. The whole model was tested on horizontally placed square-sectioned 90 bend, which was partially filled by the water. The main goal of this study was to demonstrate the applicability of this model and solution method for capturing the water-air interface as well as for predicting the turbulent effects in both fluids.  相似文献   

7.
The motion of a body in an ideal incompressible fluid flow without vortices in the absence of external forces is considered. It is demonstrated that the body can move inertially from the state at rest if its shape satisfies certain conditions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 214–219, July–August, 2008.  相似文献   

8.
In previous studies, the moment‐of‐fluid interface reconstruction method showed dramatic accuracy improvements in static and pure advection tests over existing methods, but this did not translate into an equivalent improvement in volume‐tracked multimaterial incompressible flow simulation using low‐order finite elements. In this work, the combined effects of the spatial discretization and interface reconstruction in flow simulation are examined. The mixed finite element pairs, Q1Q0 (with pressure stabilization) and Q2P ? 1 are compared. Material order‐dependent and material order‐independent first and second‐order accurate interface reconstruction methods are used. The Q2P ? 1 elements show significant improvements in computed flow solution accuracy for single material flows but show reduced convergence using element‐average piecewise constant density and viscosity in volume‐tracked simulations. In general, a refined Q1Q0 grid, with better material interface resolution, provided an accuracy similar to the Q2P ? 1 element grid with a comparable number of degrees of freedom. Moment‐of‐fluid shows more benefit from the higher‐order accurate flow simulation than the LVIRA, Youngs', and power diagram interface reconstruction methods, especially on unstructured grids, but does not recover the dramatic accuracy improvements it has shown in advection tests. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

9.
An unsteady kinematic problem for arbitrary two-dimensional motion of an airfoil in an ideal incompressible fluid with formation of one and two vortex wakes is solved. The problem is solved by the method of conformal mapping of the flow domain onto a circle exterior; solution singularities in the vicinity of a sharp edge are analyzed, and the initial asymptotics of the solution is taken into account. The calculated results are found to be in good agreement with available experimental data on visualization of the flow pattern. The necessity of correct modeling of the initial stage of vortex-wake formation is demonstrated. A regular flow pattern is found to form after three and more periods of oscillations. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 2, pp. 120–128, March-April, 2009.  相似文献   

10.
Results of calculations of fluid flow over a step located on a channel bottom are given. Numerical modeling is performed for the model of free-boundary potential flows of an ideal incompressible fluid using a finite-difference method with dynamically adaptive grids. The behavior of the free surface in the neighborhood of the step is studied as a function of the incident-flow velocity. The results are compared with experimental data. __________ Translated from PrikladnayaMekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 6, pp. 17–22, November–December, 2006.  相似文献   

11.
A general formulation of the plane coupled dynamical and aerodynamical problem of the motion of a rigid body with a rotational degree of freedom in a viscous incompressible fluid flow is given. A computation technique for solving the Navier-Stokes equations based on the meshless viscous vortex domain method is used. The autorotation of a single plate and a pair of plates is investigated. The effect of the reduced moment of inertia and the Reynolds number on the angular rotation velocity is determined. The time dependences of the hydrodynamic loads are compared with the corresponding instantaneous flow patterns. The increased the autorotation velocity of two plates in tandem is detected.  相似文献   

12.
This paper presents a numerical study for the unsteady flow of a magnetohydrodynamic (MHD) Sisko fluid in annular pipe. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field. Based on the constitutive relationship of a Sisko fluid, the non‐linear equation governing the flow is first modelled and then numerically solved. The effects of the various parameters especially the power index n, the material parameter of the non‐Newtonian fluid b and the magnetic parameter B on the flow characteristics are explored numerically and presented through several graphs. Moreover, the shear‐thinning and shear‐thickening characteristics of the non‐Newtonian Sisko fluid are investigated and a comparison is also made with the Newtonian fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
This paper compares the numerical performance of the moment‐of‐fluid (MOF) interface reconstruction technique with Youngs, LVIRA, power diagram (PD), and Swartz interface reconstruction techniques in the context of a volume‐of‐fluid (VOF) based finite element projection method for the numerical simulation of variable‐density incompressible viscous flows. In pure advection tests with multiple materials MOF shows dramatic improvements in accuracy compared with the other methods. In incompressible flows where density differences determine the flow evolution, all the methods perform similarly for two material flows on structured grids. On unstructured grids, the second‐order MOF, LVIRA, and Swartz methods perform similarly and show improvement over the first‐order Youngs' and PD methods. For flow simulations with more than two materials, MOF shows increased accuracy in interface positions on coarse meshes. In most cases, the convergence and accuracy of the computed flow solution was not strongly affected by interface reconstruction method. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

14.
A steady flow problem of a viscous, incompressible fluid through an orifice is widely applicable to many physical phenomena and has been studied previously by many researchers. A problem of such type has been solved by applying LAD method given by Roache [1]. The resulting system of linear equations is solved by Hockney's method [2].  相似文献   

15.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A new finite difference method for the discretization of the incompressible Navier–Stokes equations is presented. The scheme is constructed on a staggered‐mesh grid system. The convection terms are discretized with a fifth‐order‐accurate upwind compact difference approximation, the viscous terms are discretized with a sixth‐order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth‐order difference approximation on a cell‐centered mesh. Time advancement uses a three‐stage Runge–Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

17.
A computational fluid dynamics (CFD) analysis was conducted to study the unsteady aerodynamics of a virtual flying bumblebee during hovering flight. The integrated geometry of bumblebee was established to define the shape of a three‐dimensional virtual bumblebee model with beating its wings, accurately mimicking the three‐dimensional movements of wings during hovering flight. The kinematics data of wings documented from the measurement to the bumblebee in normal hovering flight aided by the high‐speed video. The Navier–Stokes equations are solved numerically. The solution provides the flow and pressure fields, from which the aerodynamic forces and vorticity wake structure are obtained. Insights into the unsteady aerodynamic force generation process are gained from the force and flow‐structure information. The CFD analysis has established an overall understanding of the viscous and unsteady flow around the virtual flying bumblebee and of the time course of instantaneous force production, which reveals that hovering flight is dominated by the unsteady aerodynamics of both the instantaneous dynamics and also the past history of the wing. A coherent leading‐edge vortex with axial flow and the attached wingtip vortex and trailing edge vortex were detected. The leading edge vortex, wing tip vortex and trailing edge vortex, which caused by the pressure difference between the upper and the lower surface of wings. The axial flow, which include the spanwise flow and chordwise flow, is derived from the spanwise pressure gradient and chordwise pressure gradient, will stabilize the vortex and gives it a characteristic spiral conical shape. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

19.
20.
A high‐order compact finite‐difference lattice Boltzmann method (CFDLBM) is proposed and applied to accurately compute steady and unsteady incompressible flows. Herein, the spatial derivatives in the lattice Boltzmann equation are discretized by using the fourth‐order compact FD scheme, and the temporal term is discretized with the fourth‐order Runge–Kutta scheme to provide an accurate and efficient incompressible flow solver. A high‐order spectral‐type low‐pass compact filter is used to stabilize the numerical solution. An iterative initialization procedure is presented and applied to generate consistent initial conditions for the simulation of unsteady flows. A sensitivity study is also conducted to evaluate the effects of grid size, filtering, and procedure of boundary conditions implementation on accuracy and convergence rate of the solution. The accuracy and efficiency of the proposed solution procedure based on the CFDLBM method are also examined by comparison with the classical LBM for different flow conditions. Two test cases considered herein for validating the results of the incompressible steady flows are a two‐dimensional (2‐D) backward‐facing step and a 2‐D cavity at different Reynolds numbers. Results of these steady solutions computed by the CFDLBM are thoroughly compared with those of a compact FD Navier–Stokes flow solver. Three other test cases, namely, a 2‐D Couette flow, the Taylor's vortex problem, and the doubly periodic shear layers, are simulated to investigate the accuracy of the proposed scheme in solving unsteady incompressible flows. Results obtained for these test cases are in good agreement with the analytical solutions and also with the available numerical and experimental results. The study shows that the present solution methodology is robust, efficient, and accurate for solving steady and unsteady incompressible flow problems even at high Reynolds numbers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号