首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
硒化铅量子点聚乙烯醇薄膜的三阶非线性光学特性   总被引:2,自引:0,他引:2  
通过湿化学方法制备了具有三阶非线性光学性质的硒化铅/聚乙烯醇复合物薄膜.采用透射电镜和扫描电镜对硒化铅量子点的尺寸和薄膜的形貌进行表征.运用Z扫描方法,研究了薄膜在波长为532nm,脉冲宽度为38ps条件下的三阶非线性光学性质.实验结果表明:合成的硒化铅量子点尺寸在10nm左右,属于强量子受限,制备的薄膜表面粗糙度比较好;薄膜在皮秒脉冲激光作用下呈现负的非线性折射效应和反饱和吸收性质,其三阶非线性极化率χ(3)为3.6×10-11 esu.  相似文献   

2.
利用化学气相沉积法(CVD),分别以三氧化二镓(Ga2O3)和氨气(NH3)为镓源和氮源在硅衬底合成了一种由片状微晶构成的氮化镓(GaN)薄膜,实验中没有使用缓冲层。通过场发射扫描电子显微镜(FESEM)、电子能量散射谱(EDS)、X射线衍射(XRD)、高分辨电镜(HRTEM)和光致发光谱(PL)对样品进行分析,生成物为质量较好的富镓的纯氮化镓薄膜。片状氮化镓微晶表面大小约数百纳米,厚度数十纳米,薄膜表面平整、致密,没有裂纹或龟裂现象,与Si衬底结合紧密。氮化镓薄膜的带边峰位于367nm处,同时出现了黄光发射峰。并对此种氮化镓薄膜的生长机理进行了探讨。  相似文献   

3.
4.
5.
6.
化学溶液沉积(CSD)法制备YBCO薄膜研究进展   总被引:1,自引:0,他引:1  
采用CSD法制备YBCO薄膜可精确的控制组份,不需要真空设备,成为近年来的研究热点之一。文中概述了CSD法制备YBCO薄膜的研究进展,总结了在不同的CSD工艺中,起始原料、化学添加剂对YBCO薄膜热处理时间、质量、可重复性等因素的影响。  相似文献   

7.
以氯化铵、氯化镉、氢氧化钾和硫脲为反应物采用化学水浴法制备了硫化镉薄膜,为了作对比研究,采用射频磁控溅射以硫化镉为靶材,氩气为溅射气体,制备了硫化镉薄膜。采用X射线衍射、扫描电子显微镜和紫外-可见光光谱仪分别表征了硫化镉薄膜的结构、形貌和光学吸收特性。结果表明,采用以上两种方法制备的硫化镉均具有(002)择优取向,溅射法制备的硫化镉薄膜较致密,薄膜表面较光滑,平均晶粒尺寸在20~30nm;水浴法制备的硫化镉薄膜颗粒尺寸较小,缺陷较多。除了在短波段溅射所得硫化镉薄膜的透过率略差于水浴法所得硫化镉薄膜之外,溅射法制备的硫化镉薄膜的性能整体上优于水浴法制备的薄膜。两种方法制备的硫化镉薄膜的能隙在2.3~2.5eV。  相似文献   

8.
用化学沉积方法在沉积温度为90 ℃下制备了CdS薄膜。研究了直接退火处理和涂敷CdCl2甲醇饱和溶液后退火处理对CdS薄膜的影响。利用X射线衍射、扫描电子显微镜对薄膜的晶体结构、表面形貌进行了研究,发现没有任何处理的CdS薄膜没有明显的晶型;直接退火处理促进了CdS立方相的结晶,晶粒没有增大且生长出许多细小的晶粒;涂敷CdCl2甲醇饱和溶液后退火处理不仅极大地促进了CdS六角相的结晶,而且晶粒增粗增大,表面更加光滑。用吸收光谱研究了薄膜的光学特性,发现退火使薄膜的禁带宽度变窄,涂敷CdCl2甲醇溶液后退火处理使吸收边变陡和带尾变小。表明涂敷CdCl2甲醇溶液退火处理明显改善CdS薄膜的结晶质量和光学性质。  相似文献   

9.
报道用高氢稀释硅烷为反应气源,用等高子体增强化学汽相沉积(PECVD)方法淀积的含有纳米晶粒硅薄膜,未经任何后处理过程,在室温下观察到可见光致发光。将此光发射归因于纳米硅晶粒中的光生载流子在量子尺寸效应下所产生的光子能量高于硅单晶本体能隙,还对发光具有重要影响的一些淀积参数进行了研究。 关键词:  相似文献   

10.
利用化学浴沉积法制备适合于铜铟镓硒薄膜太阳能电池缓冲层材料的CdS多晶薄膜,研究了在不同温度和不同时间下沉积薄膜的性质.薄膜生长开始由ion-by-ion机制控制,随着时间的进行,cluster-by-cluster机制占据主导.薄膜的生长速度随着沉积温度的升高而快速增加,直到达到饱和厚度.并且饱和厚度随温度升高而相应降低.SEM表明随沉积时间增加以及温度升高,薄膜表面形貌从多孔到粗糙的不均匀转变.XRD结果显示,薄膜由立方和六方两相结构组成,控制沉积时间对薄膜的主要晶相结构很关键.所有温度下沉积的CdS  相似文献   

11.
SnS (stannous sulfide) films were prepared by chemical bath deposition in which a novel chelating reagent ammonium citrate was used. The film has a zinc blende structure or an orthorhombic structure which is determined by the pH value and the temperature of the deposition solution. The reason for this result is considered to be that SnS films prepared under different conditions have different deposition mechanisms (ion-by-ion mechanism for the zinc blende structured SnS and hydroxide cluster mechanism for the orthorhombic structured SnS). The prepared SnS films are homogeneous and well adhered. SEM images show that the SnS films with different structures have different surface morphologies. Electrical test shows that the resistivity of the films is as low as 420 Ω cm and 3300 Ω cm for orthorhombic and zinc blende SnS films, respectively, which are much lower than the ever reported values. Persistent photoconductivity (PPC) phenomena are observed for both the films with zinc blende and orthorhombic structures by photo-current responses measurement. The optical bandgaps of the SnS films are determined to be 1.75 eV and 1.15 eV for zinc blende structure and orthorhombic structure, respectively.  相似文献   

12.
Based on the lotus effect principle, the superhydrophobic poly(vinylidene fluoride) (PVDF) film was successfully prepared by the method of alkali treatment enhancing chemical bath deposition. The surface of PVDF film prepared in this work was constructed by many smooth and regular microreliefs. Oxygen-containing functional groups were introduced in PVDF film by treatment with aqueous NaOH solution. The nano-scale peaks on the top of the microreliefs were implemented by the reaction between dimethyldichlorosilane/methyltrichlorosilane solution and the oxygen-containing functional groups of PVDF film. The micro- and nano-scale structures, similar to the lotus leaf, was clearly observed on PVDF film surface by scanning electronic microscopy (SEM) and atomic force microscope (AFM). The water contact angle and sliding angle on the fabricated lotus-leaf-like PVDF film surface were 157° and 1°, respectively, exhibiting superhydrophobic property and self-cleaning property.  相似文献   

13.
Photoexcited carrier dynamics in thin CdSe nanocrystalline films prepared by chemical bath deposition are strongly dependent on the deposition parameters. In this paper, we show how an increase in concentration of CdSO4 in deposition bath affects the photoexcited carrier dynamics in nanocrystals. We used ultrafast absorption and photoluminescence laser spectroscopy to compare the carrier dynamics in samples prepared with and without increased CdSO4 concentration. We have found that in the Cd-rich samples the spectral dependences of both photoluminescence and absorption dynamics are considerably less pronounced and the dynamics are slower. The observed effects were explained by the suppression of surface mediated carrier relaxation due to the passivation of individual nanocrystals by cadmium hydroxide and/or by sulphatocomplexes of Cd2+.  相似文献   

14.
Zinc sulphide thin films are deposited on SnO2/glass using the chemical bath deposition technique. X-ray diffraction and atomic force microscopy are used to characterize the structure of the films; the surface composition of the films is studied by Auger electrons spectroscopy, the work function and the photovoltage are investigated by the Kelvin method. Using these techniques, we specify the effect of pH solution and heat treatment in vacuum at 500 °C. The cubic structure corresponding to the (1 1 1) planes of β-ZnS is obtained for pH equal to 10. The work function (Φmaterial − Φprobe) for ZnS deposited at pH 10 is equal to −152 meV. Annealing at 500 °C increases Φm (by about 43 meV) and induces the formation of a negative surface barrier. In all cases, Auger spectra indicate that the surface composition of zinc sulphide thin films exhibits the presence of the constituent elements Zn and S as well as C and O as impurity elements.  相似文献   

15.
Ga-doped CdS thin films, with different [Ga]/[Cd] ratios, were grown using chemical bath deposition. The effect of Ga-doping on optical properties and bandgap of CdS films is investigated. Resistivity, carrier density, and mobility of doped films were acquired using Hall effect measurements. Crystal structure as well as crystal quality and phase transition were determined using X-ray diffraction (XRD) and Micro-Raman spectroscopy. Film morphology was studied using scanning electron microscopy, while film chemistry and binding states were studied using X-ray photoelectron spectroscopy (XPS). A minimum bandgap of 2.26 eV was obtained at [Ga]/[Cd] ratio of 1.7 × 10−2. XRD studies showed Ga3+ ions entering the lattice substitutionally at low concentration, and interstitially at high concentration. Phase transition, due to annealing, as well as induced lattice defects, due to doping, were detected by Micro-Raman spectroscopy. The highest carrier density and lowest resistivity were obtained at [Ga]/[Cd] ratio of 3.4 × 10−2. XPS measurements detect an increase in sulfur deficiency in doped films.  相似文献   

16.
Nanowall shaped Bi2S3 films were prepared by chemical bath deposition in which ammonium citrate and thioacetamide were used as chelating reagent and sulfur source, respectively. The nanowall Bi2S3 films show large-surface-area nanowall shaped morphology. It is found that the pH value (pH = 6 or pH = 6.5) of the solution is a crucial parameter to obtain the nanowall shaped Bi2S3 films. The composition of the nanowall Bi2S3 films is close to the stoichiometric ratio of Bi2S3. The absorption edge of the nanowall shaped Bi2S3 films is located at around 900 nm, indicating that the optical bandgap of the Bi2S3 films is around 1.4 eV. The nanowall Bi2S3 films show obvious photo-sensitivity. The photo-to-dark conductivity ratios of the nanowall Bi2S3 films prepared at pH = 6 and pH = 6.5 are all around 50. This value is around five times than that of the non-nanowall shaped Bi2S3 films which is prepared at pH = 7.  相似文献   

17.
Water condensation, a complex and challenging process, is investigated on a metallic (Zn) surface, regularly used as anticorrosive surface. The Zn surface is coated with hydroxide zinc carbonate by chemical bath deposition, a very simple, low-cost and easily applicable process. As the deposition time increases, the surface roughness augments and the contact angle with water can be varied from 75° to 150°, corresponding to changing the surface properties from hydrophobic to ultrahydrophobic and superhydrophobic. During the condensation process, the droplet growth laws and surface coverage are found similar to what is found on smooth surfaces, with a transition from Cassie-Baxter to Wenzel wetting states at long times. In particular, it is noticeable in view of corrosion effects that the water surface coverage remains on order of 55%.  相似文献   

18.
The photoluminescence study of self-assembled ZnO nanorods grown on a pre-treated Si substrate by a simple chemical bath deposition method at a temperature of 80 °C is hereby reported. By annealing in O2 environment the UV emission is enhanced with diminishing deep level emission suggesting that most of the deep level emission is due to oxygen vacancies. The photoluminescence was investigated from 10 K to room temperature. The low temperature photoluminescence spectrum is dominated by donor-bound exciton. The activation energy and binding energy of shallow donors giving rise to bound exciton emission were calculated to be around 13.2 meV, 46 meV, respectively. Depending on these energy values and nature of growth environment, hydrogen is suggested to be the possible contaminating element acting as a donor.  相似文献   

19.
In this paper, we compare the performance of Cu(In,Ga)(S,Se)2 (CIGSSe) thin film solar cells with a CdS buffer layer grown by chemical bath deposition (CBD) with UV irradiation of 365 nm or 254 nm at an output power of 8 W. The effects of UV light irradiation on the CBD-CdS thin film deposition mechanism were investigated through chemical and electro-optical studies. UV light irradiation during the solution process promotes the hydrolysis of thiourea, thereby inhibiting the formation of the intermediate products being developed on the reaction pathways and decreasing the solution pH. Therefore, the efficiency of the CdS/CIGSSe solar cells was improved because of the increased elemental ratio of S/(S + O) in the CdS thin film. This very simple and effective approach can be used to control the S/O ratio of the CdS thin film fabricated by the CBD process without artificially controlling the process temperature, solution pH or concentration.  相似文献   

20.
The effect of deposition time on the structural, electrical and optical properties of SnS thin films deposited by chemical bath deposition onto glass substrates with different deposition times (2, 4, 6, 8 and 10 h) at 60 °C were investigated. The obtained films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and optical absorption spectra. All deposited films were polycrystalline and had orthorhombic structure with small crystal grains. Their microstructures had changed with deposition time, and their compositions were nearly stoichiometric. Electrical parameters such as resistivity and type of electrical conduction were determined from the Hall Effect measurements. Hall Effect measurements show that obtained films have p-type conductivity and resistivity values of SnS films have changed with deposition time. For allowed direct, allowed indirect, forbidden direct and forbidden indirect transitions, band gap values varied in the range 1.30-1.97 eV, 0.83-1.36 eV, 0.93-1.49 eV and 0.62-1.23 eV, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号