首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
A K1,k-factorization of λKm,n is a set of edge-disjoint K1,k-factors of λKm,n,which partition the set of edges of λKm,n.In this paper,it is proved that a sufficient condition for the existence of K1,k-factorization of λKm,n,whenever k is any positive integer,is that(1) m ≤ kn,(2) n ≤ km,(3) km-n ≡ kn-m ≡ 0(mod(k2-1)) and(4) λ(km-n)(kn-m) ≡ 0(mod k(k -1)(k2 -1)(m n)).  相似文献   

2.
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pv-factorization of λKm,n is a set of edge-disjoint Pv-factors of λKm,n which partition the set of edges of λKm,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pv-factorization of λKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v= 3. In this paper we will show that the conjecture is true when v= 4k- 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization of λKm,n is (1) (2κ - 1)m ≤ 2kn, (2) (2k - 1)n ≤ 2km, (3) m + n ≡0 (mod 4κ - 1), (4) λ(4κ - 1)mn/[2(2κ - 1)(m + n)] is an integer.  相似文献   

3.
LetλKm,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A Pν-factorization ofλKm,n is a set of edge-disjoint Pν-factors ofλKm,n which partition the set of edges ofλKm,n. Whenνis an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a Pν-factorization ofλKm,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true forν= 3. In this paper we will show that the conjecture is true whenν= 4k-1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization ofλKm,n is (1) (2k-1)m≤2kn, (2) (2k-1)n≤2km, (3)m n = 0 (mod 4k-1), (4)λ(4k-1)mn/[2(2k-1)(m n)] is an integer.  相似文献   

4.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v -factors of λK m,n which partition the set of edges of λK m,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v -factorization of λK m,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v = 3. In this paper we will show that the conjecture is true when v = 4k − 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P 4k−1-factorization of λK m,n is (1) (2k − 1)m ⩽ 2kn, (2) (2k − 1)n ⩽ 2km, (3) m + n ≡ 0 (mod 4k − 1), (4) λ(4k − 1)mn/[2(2k − 1)(m + n)] is an integer.  相似文献   

5.
The spectrum of path factorization of bipartite multigraphs   总被引:1,自引:0,他引:1  
LetλK_(m,n)be a bipartite multigraph with two partite sets having m and n vertices, respectively.A P_v-factorization ofλK_(m,n)is a set of edge-disjoint P_v-factors ofλK_(m,n)which partition the set of edges ofλK_(m,n).When v is an even number,Ushio,Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P_v-factorization ofλK_(m,n).When v is an odd number,we have proposed a conjecture.Very recently,we have proved that the conjecture is true when v=4k-1.In this paper we shall show that the conjecture is true when v = 4k 1,and then the conjecture is true.That is,we will prove that the necessary and sufficient conditions for the existence of a P_(4k 1)-factorization ofλK_(m,n)are(1)2km≤(2k 1)n,(2)2kn≤(2k 1)m,(3)m n≡0(mod 4k 1),(4)λ(4k 1)mn/[4k(m n)]is an integer.  相似文献   

6.
Let λK m,n be a bipartite multigraph with two partite sets having m and n vertices, respectively. A P v-factorization of λK m,n is a set of edge-disjoint P v -factors of λK m,n which partition the set of edges of λK m,n. When v is an even number, Ushio, Wang and the second author of the paper gave a necessary and sufficient condition for the existence of a P v -factorization of λK m,n. When v is an odd number, we proposed a conjecture. However, up to now we only know that the conjecture is true for v = 3. In this paper we will show that the conjecture is true when v = 4k ? 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P 4k?1-factorization of λK m,n is (1) (2k ? 1)m ? 2kn, (2) (2k ? 1)n ? 2km, (3) m + n ≡ 0 (mod 4k ? 1), (4) λ(4k ? 1)mn/[2(2k ? 1)(m + n)] is an integer.  相似文献   

7.
Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for the existence of Pv-factorization of Km,n.When v is an odd number, Ushio in 1993 proposed a conjecture. However, up to now we only know that Ushio Conjecture is true for v = 3. In this paper we will show that Ushio Conjecture is true when v = 4k - 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization of Km,n is (1) (2k - 1)m ≤ 2kn, (2) (2k -1)n≤2km, (3) m n ≡ 0 (mod 4k - 1), (4) (4k -1)mn/[2(2k -1)(m n)] is an integer.  相似文献   

8.
An excessive factorization of a multigraph G is a set F={F1,F2,…,Fr} of 1-factors of G whose union is E(G) and, subject to this condition, r is minimum. The integer r is called the excessive index of G and denoted by . We set if an excessive factorization does not exist. Analogously, let m be a fixed positive integer. An excessive[m]-factorization is a set M={M1,M2,…,Mk} of matchings of G, all of size m, whose union is E(G) and, subject to this condition, k is minimum. The integer k is denoted by and called the excessive [m]-index of G. Again, we set if an excessive [m]-factorization does not exist. In this paper we shall prove that, for bipartite multigraphs, both the parameters and are computable in polynomial time, and we shall obtain an efficient algorithm for finding an excessive factorization and excessive [m]-factorization, respectively, of any bipartite multigraph.  相似文献   

9.
Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for the existence of Pv-factorization of Km,n. When v is an odd number, Ushio in 1993 proposed a conjecture. However, up to now we only know that Ushio Conjecture is true for v = 3. In this paper we will show that Ushio Conjecture is true when v = 4k - 1. That is, we shall prove that a necessary and sufficient condition for the existence of a P4k-1-factorization of Km,n is (1) (2k - 1)m ⩽ 2kn, (2) (2k - 1)n ⩽ 2km, (3) m + n ≡ 0 (mod 4k - 1), (4) (4k - 1)mn/[2(2k - 1)(m + n)] is an integer.  相似文献   

10.
朱莉  王建 《大学数学》2011,27(3):70-74
如果完全二部多重图λK<,m,n>的边集可以划分为λK<,m,n>的K<,p,q>-因子,则称λK<,m,n>存在K<,p,q>-因子分解.当p=1和q=2时,λK<,m,n>的K<,1,2>-因子分解的存在性问题已被完全解决.最近我们得到了当λ=1时,K<,m,n>存在K<,2,3>-因子分解的充分必要条件.对于任意...  相似文献   

11.
肖岚  刘岩 《运筹学学报》2012,16(3):132-138
设G是一个简单图, f是定义在V(G)上的整数值函数,且m是大于等于2的整数. 讨论(0, mf-k+1)-图G的正交因子分解, 并且证明了对任意的1≤k≤m, (0, mf-k+1)-图G中存在着一个子图R, 使得R有一个(0,f)-因子分解正交于图G中的任意一个k-子图H.  相似文献   

12.
In this paper, it is shown that a necessary and sufficient condition for the existence of aC k-factorization ofK m,n is (i)m = n 0 (mod 2), (ii)k 0 (mod 2),k 4 and (iii) 2n 0 (modk) with precisely one exception, namely m =n = k = 6.  相似文献   

13.
A new infinite family of simple indecomposable one‐factorizations of the complete multigraphs is constructed by using quadrics of finite projective spaces. © 2002 Wiley Periodicals, Inc. J Combin Designs 10: 139–143, 2002; DOI 10.1002/jcd.997  相似文献   

14.
Let K_(m,n) be a complete bipartite graph with two partite sets having m and nvertices, respectively. A K_(p,q)-factorization of K_(m,n) is a set of edge-disjoint K_(p,q)-factorsof K_(m,n) which partition the set of edges of K_(m,n). When p=i and q is a prime number,Wang, in his paper "On K_(1,k)-factorizations of a complete bipartite graph" (Discrete Math,1994, 126; 359-364), investigated the K_(1,q)-factorization of K_(m,n) and gave a sufficientcondition for such a factorization to exist. In the paper "K_(1,k)-factorizations of completebipartite graphs" (Discrete Math, 2002, 259: 301-306), Du and Wang extended Wang'sresult to the case that q is any positive integer In this paper, we give a sufficient conditionfor K_(m,n) to have a K_(p,q)-factorization. As a special case, it is shown that the Martin's BACconjecture is true when p: q=k: (k+1) for any positive integer k.  相似文献   

15.
We conclude the study of complete K1,q-factorizations of complete bipartite graphs of the form Kn,n and show that, so long as the obvious Basic Arithmetic Conditions are satisfied, such complete factorizations must exist. © 1997 John Wiley & Sons, Inc. J Combin Designs 5: 407–415, 1997  相似文献   

16.
In this paper the authors generalize the classic random bipartite graph model, and define a model of the random bipartite multigraphs as follows:let m = m(n) be a positive integer-valued function on n and ζ(n,m;{pk}) the probability space consisting of all the labeled bipartite multigraphs with two vertex sets A ={a1,a2,...,an} and B = {b1,b2,...,bm}, in which the numbers tai,bj of the edges between any two vertices ai∈A and bj∈ B are identically distributed independent random variables with distribution P{tai,bj=k}=pk,k=0,1,2,...,where pk ≥0 and ∞Σk=0 pk=1. They obtain that Xc,d,A, the number of vertices in A with degree between c and d of Gn,m∈ζ(n, m;{pk}) has asymptotically Poisson distribution, and answer the following two questions about the space ζ(n,m;{pk}) with {pk} having geometric distribution, binomial distribution and Poisson distribution, respectively. Under which condition for {pk} can there be a function D(n) such that almost every random multigraph Gn,m∈ζ(n,m;{pk}) has maximum degree D(n)in A? under which condition for {pk} has almost every multigraph G(n,m)∈ζ(n,m;{pk}) a unique vertex of maximum degree in A?  相似文献   

17.
In the context of the degree/diameter problem for directed graphs, it is known that the number of vertices of a strongly connected bipartite digraph satisfies a Moore‐like bound in terms of its diameter k and the maximum out‐degrees (d1, d2) of its partite sets of vertices. It has been proved that, when d1d2 > 1, the digraphs attaining such a bound, called Moore bipartite digraphs, only exist when 2 ≤ k ≤ 4. This paper deals with the problem of their enumeration. In this context, using the theory of circulant matrices and the so‐called De Bruijn near‐factorizations of cyclic groups, we present some new constructions of Moore bipartite digraphs of diameter three and composite out‐degrees. By applying the iterated line digraph technique, such constructions also provide new families of dense bipartite digraphs with arbitrary diameter. Moreover, we show that the line digraph structure is inherent in any Moore bipartite digraph G of diameter k = 4, which means that G = L G′, where G′ is a Moore bipartite digraph of diameter k = 3. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 171–187, 2003  相似文献   

18.
Simple graphs are considered. Let G be a graph andg(x) andf(x) integer-valued functions defined on V(G) withg(x)⩽f(x) for everyxɛV(G). For a subgraphH ofG and a factorizationF=|F 1,F 2,⃛,F 1| ofG, if |E(H)∩E(F 1)|=1,1⩽ij, then we say thatF orthogonal toH. It is proved that for an (mg(x)+k,mf(x) -k)-graphG, there exists a subgraphR ofG such that for any subgraphH ofG with |E(H)|=k,R has a (g,f)-factorization orthogonal toH, where 1⩽k<m andg(x)⩾1 orf(x)⩾5 for everyxɛV(G). Project supported by the Chitia Postdoctoral Science Foundation and Chuang Xin Foundation of the Chinese Academy of Sciences.  相似文献   

19.
20.
Let Km,n be a complete bipartite graph with two partite sets having m and n vertices, respectively. A Pv-factorization of Km,n is a set of edge-disjoint Pv-factors of Km,n which partition the set of edges of Km,n. When v is an even number, Wang and Ushio gave a necessary and sufficient condition for existence of Pv-factorization of Km,n. When k is an odd number, Ushio in 1993 proposed a conjecture. Very recently, we have proved that Ushio's conjecture is true when v = 4k-1. In this paper we shall show that Ushio Conjecture is true when v = 4k 1, and then Ushio's conjecture is true. That is, we will prove that a necessary and sufficient condition for the existence of a P4k 1-factorization of Km,n is (i) 2km≤ (2k 1)n, (ii) 2kn≤ (2k 1)m, (iii) m n = 0 (mod 4k 1), (iv) (4k 1)mn/[4k(m n)] is an integer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号