首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal transitions in the bulk structure of triblock copolymers (PAA-b-PEO-b-PAA) based on polyacrylamide and poly(ethylene oxide) with varying molecular weight (length) of PEO block comparing with the structures of individual polymers and polymer mixtures were investigated. A lot of effects, such as the melting temperature depression, decreasing of the crystallinity degree of PEO and also appearance of the microphase separation in amorphous regions of the polymer mixtures and the triblock copolymers were found. Such investigations pointed to a strong intramolecular interaction of the polymer blocks in the triblock copolymers that is confirmed by the results of IR spectroscopy. It was shown that PEO and PAA blocks formed the system of H-bonds with participant of trans-multimers of amide groups.  相似文献   

2.
Biocompatible and biodegradable ABC and ABCBA triblock and pentablock copolymers composed of poly(ε‐caprolactone) (PCL), poly(L ‐lactide) (PLA), and poly(ethylene glycol) (PEO) with controlled molecular weights and low polydispersities were synthesized by a click conjugation between alkyne‐terminated PCL‐b‐PLA and azide‐terminated PEO. Their molecular structures, physicochemical and self‐assembly properties were thoroughly characterized by means of FT‐IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, wide‐angle X‐ray diffraction, dynamic light scattering, and transmission electron microscopy. These copolymers formed microphase‐separated crystalline materials in solid state, where the crystallization of PCL block was greatly restricted by both PEO and PLA blocks. These copolymers self‐assembled into starlike and flowerlike micelles with a spherical morphology, and the micelles were stable over 27 days in aqueous solution at 37 °C. The doxorubicin (DOX) drug‐loaded nanoparticles showed a bigger size with a similar spherical morphology compared to blank nanoparticles, demonstrating a biphasic drug‐release profile in buffer solution and at 37 °C. Moreover, the DOX‐loaded nanoparticles fabricated from the pentablock copolymer sustained a longer drug‐release period (25 days) at pH 7.4 than those of the triblock copolymer. The blank nanoparticles showed good cell viability, whereas the DOX‐loaded nanoparticles killed fewer cells than free DOX, suggesting a controlled drug‐release effect. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Magnetic hydrogels (ferrogels) based on poly(vinyl alcohol) (PVA) and poly(hydroxyethyl methacrylate) (PHEMA) with magnetite (Fe3O4) nanoparticles were prepared. PVA ferrogels were synthesised by submitting the aqueous solution of polymer and Fe3O4 to freezing-thawing (F-T) cycles yielding a physical gel. Different samples were prepared by varying (i) the concentration of PVA, (ii) the concentration of magnetite and (iii) the number of F-T cycles applied. PHEMA ferrogels were prepared by a crosslinking polymerization reaction in the presence of magnetite yielding chemical gels. Different samples were prepared by varying (i) the concentration of HEMA, (ii) the concentration of EGDMA and (iii) the concentration of magnetite nanoparticles. All ferrogel samples were first dried before been analysed in a thermogravimetric analyzer. The resulting thermograms showed that the concentration of magnetite nanoparticles does affect the thermal stability of either ferrogels system, a general improvement in comparison with PVA and PHEMA hydrogels, respectively, being observed. The apparent activation energy (Ea) of the thermal degradation for PVA ferrogels was evaluated and calculated applying the Flynn-Wall and the Kissinger methods. Values of apparent Ea increased with the content of Fe3O4 in the ferrogel sample.  相似文献   

4.
In this study, synthesis and characterization of magnetic nanocarriers are reported for drug delivery based on the amphiphilic di‐block and tri‐block copolymers of poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) with surface modified super‐paramagnetite Fe3O4 nanoparticles (magnetic nanoparticles (MNPs)). The synthesized block copolymers (methoxy poly(ethylene glycol) (mPEG)–PCL and PCL–PEG–PCL) were characterized by Fourier transform infrared (FT‐IR), 1H nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), and their properties such as critical micelle concentration, hydrophilicity to lipophilicity balance, and hydrolytic degradation were investigated. The block copolymers were functionalized with terminal azide groups (mPEG–PCL(N3) and (N3)PCL–PEG–PCL(N3)), and magnetic Fe3O4 nanoparticles were surface modified with poly(acrylic acid) (PAA) and propargyl alcohol (MNP–PAA–C≡CH). Magnetic nanocarriers were synthesized by click reaction between azide‐terminated block copolymers and MNP–PAA–C≡CH and characterized by FT‐IR, thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), and cytotoxicity was investigated by methyl thiazolyl tetrazolium assay. In vitro drug loading and release and release kinetics were investigated. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Polyvinyl alcohol (PVA) ferrogels were easily obtained through a one-pot technique that involves co-precipitation of iron salts in the presence of a PVA solution, followed by freezing?Cthawing cycles of the resulting nanoparticles (NPs) dispersions. The protecting effect of PVA enabled the synthesis of small magnetic NPs that did not agglomerate in the initial solution allowing the synthesis of well-dispersed ferrogels by physical cross-linking. Physical properties of the physically cross-linked ferrogels, as swelling ability, melting temperature, and crystallinity, were barely affected by the presence of NPs, presenting similar or improved values when compared with chemically cross-linked systems. Ferrogels showed superparamagnetic properties at room temperature that combined with the absence of toxic residues arising from cross-linking agents make them ideal candidates for their use in biomedical applications (artificial muscles, drug delivery, and sensors among others).  相似文献   

6.
Polylactide (PLA) is a biodegradable polyester recognized for its potential use as a biomedical material. Poly(ethylene oxide) (PEO) and copolymers based on PEO and poly(propylene oxide) (PPO) are biocompatible polyethers widely applied in the biomedical field, particularly as macromolecular nonionic surfactants. In this work, PLA blocks were attached to the PEO and to the PEO and PPO-based triblock copolymer PEO–PPO–PEO, through ring-opening polymerization of racemic lactide (rac-LA) to obtain the amphiphilic triblock PLA–PEO–PLA and pentablock PLA–PEO–PPO–PEO–PLA copolymers containing hydrophilic/hydrophobic blocks with variable block mass ratios. The copolymers were evaluated for chemical composition, molar mass, and thermal properties, and they were used to prepare self-assemble aggregates in water from tetrahydrofuran polymer solutions. The combination of scattering light experiments and microscopy techniques revealed the spherical morphology of the aggregates with diameters around 180–200 nm, which comprises a hydrophobic PLA core and a hydrophilic polyether shell. The aggregates are nontoxic to human cervical cancer cell line — HeLa cells, as determined by MTS assay, and the aggregates are potential candidates to be applied in the encapsulation of hydrophobic compounds. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2203–2213  相似文献   

7.
A series of physically cross-linked hydrogels composed poly(acrylic acid) and octylphenol polyoxyethylene acrylate with high mechanical strength are reported here with dual cross-linked networks that formed by silica nanoparticles (SNs) and hydrophobic association micro-domains (HAMDs). Acrylic acid (AA) and octylphenol polyoxyethylene acrylate with 10 ethoxyl units (OP-10-AC) as basic monomers in situ graft from the SNs surface to build poly(acrylic acid) hydrophilic backbone chains with randomly distributed OP-10-AC hydrophobic side chains. The entanglements among grafted backbone polymer chains and hydrophobic branch architecture lead to the SNs and HAMDs play the role of physical cross-links for the hydrogels network structure. The rheological behavior and polymer concentration for gelation process are measured to examine the critical gelation conditions. The correlation of the polymer dual cross-linked networks with hydrogels swelling behavior, gel-to-sol phase transition, and mechanical strength are addressed, and the results imply that the unique dual cross-linking networks contribute the hydrogels distinctive swelling behavior and excellent tensile strength. The effects of SNs content, molecular weight of polymer backbone, and temperature on hydrogels properties are studied, and the results indicate that the physical hydrogel network integrity is depended on the SNs and HAMDs concentration.  相似文献   

8.
ABA block-copolymers in which the A segments are capable of forming complexes and B is a non-complexing segment, have been used to prepare polymer materials with properties that can be changed by adding a complexing agent. The complex forming segments were poly(ethylene oxide) (PEO), linear polyethylenimine (LPEI) and poly(N-tert-butylethylenimine) (PTBEI). Commercially available liquid ABA block-copolymers, in which A is PEO and B is poly(propylene oxide), were investigated with high molar mass poly(acrylic acid) (PAA) as the complexing agent for PEO. It was found that the mixtures containing 3 to 7 wt.-% of PAA, showed a marked shear-thickening behavior leading eventually to gelation. This was attributed to the transformation of intramolecular polymer complexes, at low shear rates, to intermolecular complexes, at high shear rates, due to the chain stretching of PAA. ABA copolymers in which A is LPEI or PTBEI and B polytetra-hydrofuran (PTHF), were prepared. Complexation of these copolymers with low molecular weight poly-acids or PAA in polar and non-polar solvents as well as in bulk have been investigated. ABA copolymers in which A is PEO and B a PTHF segment were prepared. These block-copolymers show two melting points: one at appr. 55°C, due to the PEO segments, and one at appr. 30°C due to the PTHF. Upon addition of alkali metal salts such as sodium iodide or sodium thiocyanate, complexes with PEO are formed and as a consequence, the melting point of the PEO segments shifts to appr. 160°C. The complexed materials behave as thermoplastic elastomers up to that temperature.  相似文献   

9.
Gold nanoparticles of improved stability against aggregation were prepared using poly(ethylene oxide)-block-poly(epsilon-caprolactone) (PEO-b-PCL) star-block copolymers. A five-arm star-shaped macroinitiator (PEO) was utilized for the automated parallel controlled ring-opening polymerization of epsilon-caprolactone to prepare a series of PEO-b-PCL star-block copolymers with a constant PEO core linked to PCL blocks of variable length. The PEO core was swelled with KAuCl4 in N,N-dimethylformamide (DMF), and gold nanoparticles were subsequently obtained by reduction with NaBH4. Since the process was always templated by the same PEO core for all investigated polymers, the average dimension of the formed gold nanoparticles was in the same range for all star-block copolymers. In sharp contrast, the size distribution and long-term stability against aggregation of the gold nanoparticles dispersed in DMF were strongly dependent on the PCL block length, confirming the role of PCL blocks as stabilizing blocks for these nanoparticles.  相似文献   

10.
杨曙光 《高分子科学》2017,35(8):1001-1008
Core-shell nanofibers were prepared by coaxial electrospinning technology,with poly(ethylene oxide) (PEO) as the core while poly(acrylic acid) (PAA) as the shell.PEO and PAA can form polymer complexes based on hydrogen bonding.In order to avoid forming strong hydrogen bonding complexes at nozzle and blocking spinning process,a polar aprotic solvent,N,N-dimethylformamide (DMF),was selected to dissolve PEO and PAA respectively.SEM,TEM and DSC were utilized to characterize the morphology and structure of PEO-PAA core-shell nanofibers.FTIR spectra demonstrated that hydrogen bonding was formed at the core-shell interface.In addition,the PAA shell of the nanofibers can be cross-linked by ethylene glycol (EG) under heat treatment,which increases the stability and extends the potential applications in aqueous environment.  相似文献   

11.
Poly(ethylene oxide) (PEO) is a key material in solid polymer electrolytes, biomaterials, drug delivery devices, and sensors. Through the use of hydrogen bonds, layer-by-layer (LBL) assemblies allow for the incorporation of PEO in a controllable tunable thin film, but little is known about the bulk properties of LBL thin films because they are often tightly bound to the substrate of assembly. The construction technique involves alternately exposing a substrate to a hydrogen-bond-donating polymer (poly(acrylic acid)) and a hydrogen-bond-accepting polymer (PEO) in solution, producing mechanically stable interdigitated layers of PEO and poly(acrylic acid) (PAA). Here, we introduce a new method of LBL film isolation using low-energy surfaces that facilitate the removal of substantial mass and area of the film, allowing, for the first time, the thermal and mechanical characterization that was previously difficult or impossible to perform. To further understand the morphology of the nanoscale blend, the glass transition is measured as a function of assembly pH via differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). The resulting trends give clues as to how the morphology and composition of a hydrogen-bonded composite film evolve as a function of pH. We also demonstrate that LBL films of PEO and PAA behave as flexible elastomeric blends at ambient conditions and allow for nanoscale control of thickness and film composition. Furthermore, we show that the crystallization of PEO is fully suppressed in these composite assemblies, a fact that proves advantageous for applications such as ultrathin hydrogels, membranes, and solid-state polymer electrolytes.  相似文献   

12.
杜然  张学同 《物理化学学报》2012,28(10):2305-2314
通过氧化偶联聚合方法成功地制备出一种基于烷氧磺酸盐功能化的聚乙撑二氧噻吩水凝胶, 揭示了零维单体胶束向二维纳米片层及三维水凝胶的转变过程, 发现通过改变反应温度或初始单体浓度, 可以诱导水凝胶网络结构单元的维度变化, 即由零维纳米粒子向二维纳米片层进行转化. 提出了一种导电高分子水凝胶的合成方法, 即采用一种氧化剂与一种多价金属盐的混合物作为引发剂, 其中前者用于诱导单体聚合, 后者则充当离子交联试剂, 并发现可以通过引入不同金属离子来改变凝胶的形貌. 此外, 导电高分子水凝胶具有良好的电化学电容, 并具有选择性吸附与可控脱附某些染料分子的特性.  相似文献   

13.
程林  王凤洋 《应用化学》2011,28(2):149-153
将等质量的嵌段聚合物聚乙烯基萘聚丙烯酸和聚氧化乙烯聚丙烯酸(P2VN-b-PAA和PEO-b-PAA)溶解于N,N′-二甲基甲酰胺(DMF)中,加入小分子二元胺(1,2-丙二胺,PDA),制备出均匀的两亲性杂壳聚合物纳米粒子(MSNPs)。 该粒子以PEO和P2VN混合嵌段为壳层,非共价键交联的PAA嵌段为核,在水相及有机相中均可稳定分散,具有典型的两亲性特点。 扫描电子显微镜和光散射测试结果表明,该杂壳聚合物粒子(MSNPs)的粒径在300 nm左右,分布较均匀,并显示出壳层可塌缩变形的疏松核(软粒子)特征。 以该聚合物粒子(MSNPs)为模板,可以方便制备出金纳米粒子簇合物。  相似文献   

14.
AB‐type block copolymers with poly(trimethylene carbonate) [poly(TMC); A] and poly(ethylene oxide) [PEO; B; number‐average molecular weight (Mn) = 5000] blocks [poly(TMC)‐b‐PEO] were synthesized via the ring‐opening polymerization of trimethylene carbonate (TMC) in the presence of monohydroxy PEO with stannous octoate as a catalyst. Mn of the resulting copolymers increased with increasing TMC content in the feed at a constant molar ratio of the monomer to the catalyst (monomer/catalyst = 125). The thermal properties of the AB diblock copolymers were investigated with differential scanning calorimetry. The melting temperature of the PEO blocks was lower than that of the homopolymer, and the crystallinity of the PEO block decreased as the length of the poly(TMC) blocks increased. The glass‐transition temperature of the poly(TMC) blocks was dependent on the diblock copolymer composition upon first heating. The static contact angle decreased sharply with increasing PEO content in the diblock copolymers. Compared with poly(TMC), poly(TMC)‐b‐PEO had a higher Young's modulus and lower elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4819–4827, 2005  相似文献   

15.
The method of enhanced Rayleigh scattering spectroscopy (ERS) was developed to investigate the complexation of poly(acrylic acid) (PAA) and poly(ethylene oxide) (PEO) in semidilute polymer solutions. Based on the Ornstein‐Zernike equation, the relationship between macromolecular static correlation length and ERS intensity was presented. Moreover, the ERS spectra were calculated by the moving window two‐dimensional (MW2D) correlation spectroscopy to get detailed information of the polymer complexation. The results indicated that the ERS spectroscopy characteristics of the polymer mixtures have similar trend, and the ERS intensity promptly increases as the macromolecular chains contract. The increase of ERS intensity showed that the degree of complexation between PAA and PEO increases when the pH value decreases. The complexation results from the collapse of macromolecular chains, which is induced by the PAA chains contracting and the enhanced association between PAA and PEO chains because of the hydrogen bond formation. In addition, the association resulting from the complexation of PAA and PEO in solution was demonstrated by the MW2D correlation spectroscopy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1847–1852, 2010  相似文献   

16.
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase‐separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of the PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 532–541  相似文献   

17.
Poly(styrene)-block-poly(4-vinylpyridine) (PS-b-P4VP) copolymers and poly(acrylic acid) (PAA) have been mixed in organic solvents. Complexation via hydrogen bonding occurs between the P4VP and PAA blocks. Those insoluble complexes aggregate to form the core of micelles surrounded by a corona of PS chains. Reorganization of these structures occurs upon addition of acidic or basic water, which results in the breaking of the hydrogen bonds between the P4VP and PAA blocks. After transfer of the initial complexes in acidic water, micelles consisting of a PS core and a protonated P4VP corona are observed. In basic water, well-defined nanoparticles formed by the PS-b-P4VP copolymers are obtained. It is demonstrated that these nanoparticles are stabilized by the negatively charged PAA chains. Finally, thermally induced disintegration of the micelles is investigated in organic solvents.  相似文献   

18.
Two chemically dissimilar diblock copolymers, polybutadiene-b-poly(acrylic acid), PBd-b-PAA (Mw = 5.8–4 kg mol−1) and poly(styrene)-b-poly(ethylene oxide), PS-b-PEO (Mw = 9–5 kg mol−1) were blended in an effort to achieve morphologies typical of triblock copolymers. Blend compatibility was achieved by the hydrogen bond driven association of the PAA block of one diblock with the PEO block of the other. Small angle X-ray scattering was used to determine the morphologies of the compositions, which were further investigated using transmission electron microscopy and selective staining techniques. The crystallinity of the PEO block was determined by differential scanning calorimetry. The hydrogen bond interactions between PEO and PAA yielded a complex triblock lamellar morphology of the form PS-b-(PEO/PAA)-b-PBd-b-(PEO/PAA). This morphology was stable when crystallization of PEO was suppressed by sufficient interaction with PAA.  相似文献   

19.
Spherical polymer brushes, poly(acrylic acid) (PAA)‐grafted polystyrene nanoparticle (PAA@PS), are employed as the macro‐crosslinker to prepare PAA hydrogels. Benefitting from the innumerable hydrogen bonds between highly entangled PAA chains both in bulk and on the polymer brush, the PAA/PAA@PS hydrogels combine desirable stretchability, toughness, and notch‐insensitivity. The uniaxial tensile tests show a very high fracture elongation up to 9.1 × 103% while the fracture toughness reaches 3.0 MJ m−3 and the maximum swelling ratio of the hydrogel can be 2.0 × 103 as well. After being loaded with silver nanoparticles, the PAA/PAA@PS hydrogels are employed as a recyclable catalyst successfully.  相似文献   

20.
The purpose of this investigation was to design novel pentablock copolymers (polylactide–polycaprolactone–polyethylene glycol–polycaprolactone–polylactide) (PLA–PCL–PEG–PCL–PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly(l-lactide) (PLLA) and poly(d,l-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA–PCL–PEG–PCL–PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL–PEG–PCL) copolymer. Moreover, pentablock copolymer-based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer-based nanoparticles can be utilized to achieve continuous near–zero-order delivery of corticosteroids from nanoparticles without any burst effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号