首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although hydrophobic forces are of great relevance in biological systems, quantifying these forces on complex biosurfaces such as cell surfaces has been difficult owing to the lack of appropriate, ultrasensitive force probes. Here, chemical force microscopy (CFM) with hydrophobic tips was used to measure local hydrophobic forces on organic surfaces and on live bacteria. On organic surfaces, we found an excellent correlation between nanoscale CFM and macroscale wettability measurements, demonstrating the sensitivity of the method toward hydrophobicity and providing novel insight into the nature of hydrophobic forces. Then, we measured hydrophobic forces associated with mycolic acids on the surface of mycobacteria, supporting the notion that these hydrophobic compounds represent an important permeation barrier to drugs.  相似文献   

2.
Mazutis L  Griffiths AD 《Lab on a chip》2012,12(10):1800-1806
We report a microfluidic approach, which allows selective and controlled 1 : 1, 2 : 1 or 3 : 1 droplet fusion. A surfactant-stabilized droplet with an interfacial surfactant coverage, Γ, of >98% will fuse spontaneously with a second droplet when Γ of the latter droplet is <16%. However, when Γ of the second droplet is ~66%, the two droplets will not fuse, unless they have previously been brought into contact for critical time τ. Therefore, controlling the number of droplets in contact for time τ allows precise control over the number of fused droplets. We have demonstrated efficient (proportion of droplets coalesced p(c) = 1.0, n > 1000) and selective 1 : 1, 2 : 1 or 3 : 1 droplet fusion (proportion of correctly fused droplets p(s) > 0.99, n > 1000). Coalescence in this regime is induced by hydrodynamic flow causing interface separation and is efficient at different Ca numbers and using different dispersed phases, continuous phases and surfactants. However, when Γ of the second droplet is ~96% coalescence is no longer observed. Droplet-based microfluidic systems, in which each droplet functions as an independent microreactor, are proving a promising tool for a wide range of ultrahigh-throughput applications in biology and chemistry. The addition of new reagents to pre-formed droplets is critical to many of these applications and we believe the system described here is a simple and flexible method to do so, as well as a new tool to study interfacial stability phenomena.  相似文献   

3.
Faria EC  Ma N  Gazi E  Gardner P  Brown M  Clarke NW  Snook RD 《The Analyst》2008,133(11):1498-1500
This communication reports that three prostate cancer cells of differing metastatic potential were discriminated based on their Young's moduli (LNCaP - 287 +/- 52 N m(-2), PC-3 - 1401 +/- 162 N m(-2) and BPH - 2797 +/- 491 N m(-2)) which were determined using AFM and the Hertz model.  相似文献   

4.
Interaction forces and adhesion between a silica sphere and a flat silica surface in aqueous electrolyte solutions were investigated by atomic force microscopy. The forces were measured as a function of surface separation, pH and NaCl concentration as the surfaces were approaching each other. The adhesion force was determined upon retraction with respect to pH, NaCl concentration and contact time. The magnitude of the long range repulsive force was decreasing with decreasing pH. A short range repulsive force was observed at pH = 2, but no long range repulsive forces were observed at this pH. Force measurements showed that adhesion of silica surfaces in water was obstructed by short and long range repulsive forces. Adhesion was enhanced when both the long and the short range repulsive force was mitigated. A maximum adhesion force of 7.8 mN/m was measured at pH = 12.5 when the short range force vanished and the long range repulsive force was reduced by increasing the NaCl concentration. At pH = 12.5, the work of adhesion was calculated to be 1.2 mJ/m2 according to the Derjaguin–Muller–Toporov (DMT) model. Adhesion energy was much less at pH = 2 (0.3 mJ/m2) due to persistive short range repulsion.  相似文献   

5.
The transport of liquid droplets on surfaces carrying reactants offers advantages in the creation of fluidic devices crucial for life science applications. In a majority of situations, a selection of these droplets on a surface, rather than all of them, will need to be moved at any one time. It is a formidable challenge to deliver the motive energy source only to specific droplets while leaving the others unmoved. Here, we describe an alternative novel solution of momentarily pinning specific droplets to the surface while allowing the rest to be moved. We demonstrate this concept via the injection of a sizable bubble that is attached to a PTFE surface within a droplet. This then affects the contact line of the droplet, pinning it despite the introduction of an incline that will normally result in sliding. The use of bubbles offers easy release of pinning at will by simple rupture using mechanical means.  相似文献   

6.
The droplet size distributions of emulsions have been measured using pulsed field gradient (PFG) nuclear magnetic resonance (NMR) for many years. This technique finds particular application with emulsions that are concentrated and/or opaque, since such emulsion systems are difficult to characterize by other methods. Most studies employing PFG techniques assume a lognormal form when extracting the droplet size distribution from the experimental data. It is clearly desirable to retrieve a droplet size distribution from the experimental data without assuming such a functional form. This is achieved for the first time using regularization techniques. Regularization based on the distribution area and on its second derivative are compared and assessed along with the following techniques for selecting the optimal regularization parameter: the L-curve method, generalized cross validation (GCV), and the discrepancy principle. Regularization is applied to both simulated data sets and experimental data. It is found that when the experimental error can be estimated accurately, the discrepancy principle with area regularization is the best approach. When the error is not known the GCV method, with second derivative regularization and allowing only nonnegative values, is most effective.  相似文献   

7.
The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble–solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble–solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes–Reynolds–Young–Laplace model. The potential to use the design principles of the ITFDA for fundamental and developmental research is demonstrated.  相似文献   

8.
Both proteins and polysaccharides are biopolymers present on a bacterial surface that can simultaneously affect bacterial adhesion. To better understand how the combined presence of proteins and polysaccharides might influence bacterial attachment, adhesion forces were examined using atomic force microscopy (AFM) between colloids (COOH- or protein-coated) and polymer-coated surfaces (BSA, lysozyme, dextran, BSA+dextran and lysozyme+dextran) as a function of residence time and ionic strength. Protein and dextran were competitively covalently bonded onto glass surfaces, forming a coating that was 22-33% protein and 68-77% dextran. Topographic and phase images of polymer-coated surfaces obtained with tapping mode AFM indicated that proteins at short residence times (<1 s) were shielded by dextran. Adhesion forces measured between colloid and polymer-coated surfaces at short residence times increased in the order protein+dextran < or = protein < dextran. However, the adhesion forces for protein+dextran-coated surface substantially increased with longer residence times, producing the largest adhesion forces between polymer coated surfaces and the colloid over the longest residence times (50-100 s). It was speculated that with longer interaction times the proteins extended out from beneath the dextran and interacted with the colloid, leading to a molecular rearrangement that increased the overall adhesion force. These results show the importance of examining the effect of the combined adhesion force with two different types of biopolymers present and how the time of interaction affects the magnitude of the force obtained with two-polymer-coated surfaces.  相似文献   

9.
10.
The periodic fluctuations in the Mie scattering intensity as a function of droplet diameter due to constructive and destructive interference of light reflected/diffracted from the droplet surface and light transmitted/refracted through the droplet were used to measure the desolvation rate of isolated water droplets in an inductively coupled plasma. The approach is applicable to study the desolvation of isolated, monodisperse droplets and does not require measurements as a function of wavelength or scattering angle. Use of a near forward scatter angle provides high intensity signals. Among the limitations of this measurement technique is the need to identify the absolute droplet diameter at one time during desolvation either by another droplet size measurement technique or by matching the pattern of Mie scattering intensity as the droplet evaporates to the theoretical intensity pattern. The results show that the droplet desolvation rate is not affected by the addition of 0.1 M NaCl to the sample even though the initial emission occurs earlier in time than when the sample does not contain a high matrix concentration. The measured droplet desolvation rates are higher than those reported by two previous publications but further measurements are needed to confirm the preliminary results reported here.  相似文献   

11.
The versatility of scanning probe microscopy, as evidenced in the capability for high-resolution imaging, mechanical measurements, and electrical probing, has great utility in biological research. This short review outlines both the strengths and weaknesses of the technique. A few examples of recent and notable applications give the reader a sense of the power of the technique and potential for contribution to the field.  相似文献   

12.
Sorption isotherms were obtained for a range of lipid/sugar/water mixtures. These were analysed using a simple hydration forces formalism. The results demonstrate that this simple analysis can be used to estimate dehydration parameters for these relatively complex systems. This in turn provides some insight into the location and role of sugars in the hydration behaviour of lipid systems. The relevance of these results to the phase behaviour of lipid/sugar mixtures during dehydration are discussed.  相似文献   

13.
This review links together for the first time both the practicalities of force measurement and the work carried out to date on force detection between polymeric surfaces in liquids using the atomic force microscope (AFM). Also included is some of the recent work that has been carried out between surfactant surfaces and biologically coated surfaces with the AFM. The emphasis in this review is on the practical issues involved with force measurement between these types of surfaces, and the similarities and irregularities between the observed types of forces measured. Comparison is made between AFM and surface force apparatus (SFA) measurements, as there is a much longer history of work with the latter. Results indicate that forces between the surfaces reviewed here are a complicated mixture of steric-type repulsion, conformational behaviour on separation and long-range attraction, which is often ascribed to 'hydrophobic' forces. The origin of this latter force remains uncertain, despite its almost ubiquitous appearance in force measurements with these types of surfaces.  相似文献   

14.
Effects of design parameters on performance of wire-mesh mist eliminators were experimentally investigated in 15 cm bubble column. The demisters performances were evaluated by droplet collection efficiency as a function of wide ranges of operating and design parameters. These parameters include: droplet size exiting the demister (250–380 μm), specific surface area (236–868 m2/m3), void fraction (97–98.3%), wire diameter (0.14–0.28 mm), packing density (130–240 kg/m3), and superficial gas velocity (0.109–0.118 m/s. All demisters were 15 cm in diameter with 10 cm pad thickness, made from 316L stainless steel layered type demister pad wires. Experiments were carried out using air–water system at ambient temperature and atmospheric pressure. The experimental data on the droplet removal efficiency were obtained using Malvern Laser Droplet Sizer. The removal efficiency was found to increase with the increasing the demister specific surface area, packing density, and superficial gas velocity. In contrast, the removal efficiency was found to increase with decreasing the demister void fraction and wire diameter. The separation efficiency is correlated empirically as a function of the design parameters. A good agreement was obtained between the measured values and the correlation predictions with ±5% accuracy.  相似文献   

15.
AFM study of forces between silica, silicon nitride and polyurethane pads   总被引:1,自引:0,他引:1  
Interaction of silica and silicon nitride with polyurethane surfaces is rather poorly studied despite being of great interest for modern semiconductor industry, e.g., for chemical-mechanical planarization (CMP) processes. Here we show the results from the application of the atomic force microscopy (AFM) technique to study the forces between silica or silicon nitride (AFM tips) and polyurethane surfaces in aqueous solutions of different acidity. The polyurethane surface potentials are derived from the measured AFM data. The obtained potentials are in rather good agreement with measurements of zeta-potentials using the streaming-potentials method. Another important parameter, adhesion, is also measured. While the surface potentials of silica are well known, there are ambiguous results on the potentials of silicon nitride that is naturally oxidized. Deriving the surface potential of the naturally oxidized silicon nitride from our measurements, we show that it is not oxidized to silica despite some earlier published expectations.  相似文献   

16.
Colloidal forces between atomic force microscopy probes of 0.12 and 0.58 N/m spring constant and flat substrates in nanoparticle suspensions were measured. Silicon nitride tips and glass spheres with a diameter of 5 and 15 mum were used as the probes whereas mica and silicon wafer were used as substrates. Aqueous suspensions were made of 5-80 nm alumina and 10 nm silica particles. Oscillatory force profiles were obtained using atomic force microscope. This finding indicates that the nanoparticles remain to be stratified in the intervening liquid films between the probe and substrate during the force measurements. Such structural effects were manifested for systems featuring attractive and weak repulsive interactions of nanoparticles with the probe and substrate. Oscillation of the structural forces shows a periodicity close to the size of nanoparticles in the suspension. When the nanoparticles are oppositely charged to the probes, they tend to coat the probes and hinder probe-substrate contact.  相似文献   

17.
K. Ko   evar  I. Mu&#x  evi 《Liquid crystals》2001,28(4):599-606
We have studied interfacial forces in MBBA, 5CB, 8CB and 12CB liquid crystals on DMOAP silanated glass substrates using a temperature controlled AFM in the force spectroscopy mode. In the bulk isotropic phase all these interfaces are clearly divided into two regions. The first molecular layer, which is absorbed to the glass surface, is smectic-like and shows submicron holes; this layer covers approximately 70% of the surface and is in all cases stable far beyond the clearing point. It is followed by a partially ordered region, which is different for different materials. We observe pre-nematic ordering in 5CB, pre-smectic ordering in 8CB and well developed layer-by-layer ordering in 12CB.  相似文献   

18.
We have studied interfacial forces in MBBA, 5CB, 8CB and 12CB liquid crystals on DMOAP silanated glass substrates using a temperature controlled AFM in the force spectroscopy mode. In the bulk isotropic phase all these interfaces are clearly divided into two regions. The first molecular layer, which is absorbed to the glass surface, is smectic-like and shows submicron holes; this layer covers approximately 70% of the surface and is in all cases stable far beyond the clearing point. It is followed by a partially ordered region, which is different for different materials. We observe pre-nematic ordering in 5CB, pre-smectic ordering in 8CB and well developed layer-by-layer ordering in 12CB.  相似文献   

19.
《Fluid Phase Equilibria》2003,214(2):121-136
The fluid phase behaviour for the binary systems carbon dioxide+cyclobutanone and propane+cyclobutanone has been determined experimentally, using Cailletet equipment. For both the systems bubble points have been determined for a number of isopleths covering the whole mole fraction range. Additionally, for the binary system carbon dioxide+cyclobutanone dew points and critical points could be observed for a number of overall-compositions rich in carbon dioxide. The temperature and pressure range were, respectively, from 278 to 369 K and from 0.1 to 14.0 MPa. Correlation of the experimental data of both systems has been performed using the Soave–Redlich–Kwong (SRK) equation of state. Satisfactory results have been achieved using only one binary interaction parameter.  相似文献   

20.
Electrospray droplet impact (EDI)/secondary ion mass spectrometry (SIMS) is a new desorption/ionization technique for mass spectrometry in which highly charged water clusters produced from the atmospheric‐pressure electrospray are accelerated in vacuum by 10 kV and impact the sample deposited on the metal substrate. EDI/SIMS was shown to enhance intact molecular ion formation dramatically compared to conventional SIMS. EDI/SIMS has been successfully applied to the analysis of mouse brain without any sample preparation. Five types of lipids, i.e. phosphatidylcholine (PC), phosphatidylserine, phosphatidylinositol (PI), galactocerebroside (GC) and sulfatide (ST), were readily detected from mouse brain section. In addition, by EDI/SIMS, six different regions of the mouse brain (cerebral cortex, corpus callosum, striatum, medulla oblongata, cerebellar cortex and cerebellar medulla) were examined. While GCs and STs were found to be rich in white matter, PIs were rich in gray matter. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号