首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.  相似文献   

2.
Aditi Sen  Ujjwal Sen 《Physics letters. A》2013,377(31-33):1832-1836
We propose a virtual-site correlation mean field theory for dealing with interacting many-body systems. It involves a coarse-graining technique that terminates a step before the mean field theory: While mean field theory deals with only single-body physical parameters, the virtual-site correlation mean field theory deals with single- as well as two-body ones, and involves a virtual site for every interaction term in the Hamiltonian. We generalize the theory to a cluster virtual-site correlation mean field, that works with a fundamental unit of the lattice of the many-body system. We apply these methods to interacting Ising spin systems in several lattice geometries and dimensions, and show that the predictions of the onset of criticality of these models are generally much better in the proposed theories as compared to the corresponding ones in mean field theories.  相似文献   

3.
We study interacting scalar field theory non-minimally coupled to gravity in the FRW background. We show that for a specific choice of interaction terms, the energy–momentum tensor of the scalar field ϕ vanishes, and as a result the scalar field does not gravitate. The naive space dependent solution to equations of motion gives rise to singular field profile. We carefully analyze the energy–momentum tensor for such a solution and show that the singularity of the solution gives a subtle contribution to the energy–momentum tensor. The space dependent solution therefore is not non-gravitating. Our conclusion is applicable to other space–time dependent non-gravitating solutions as well. We study hybrid inflation scenario in this model when purely time dependent non-gravitating field is coupled to another scalar field χ.  相似文献   

4.
We draw motivation from recent experimental studies and present a comprehensive study of magnetothermoelectric transport in a graphene monolayer within the linear response regime. We employ the modified Kubo formalism developed for thermal transport in a magnetic field. Thermopower as well as thermal conductivity as a function of the gate voltage of a graphene monolayer in the presence of a magnetic field perpendicular to the graphene plane is determined for low magnetic fields (~1 T) as well as high fields (~8 T). We include the effects of screened charged impurities on thermal transport. We find good qualitative and quantitative agreement with recent experimental work on the subject. In addition, in order to analyze the effects of modulation, which can be induced by various means, on the thermal transport in graphene, we evaluate the thermal transport coefficients for a graphene monolayer subjected to a periodic electric modulation in a magnetic field. The results are presented as a function of the magnetic field and the gate voltage.  相似文献   

5.
We further discuss the field theory which we introduced in a previous paper. We find that it is possible for a component of the field to have a minimum at an arbitrary origin point as a consequence of the field equations.  相似文献   

6.
We study how phase decoherence through intrinsic decoherence leads to growing entropy and a strong degradation of the maximum generated entanglement as a measure of information content of ionic state due to ion-laser interaction with a trapped ion. We calculate the partial entropy of the particle (atom or trapped ion) and field subsystems as well as the total entropy. The total entropy is shown to increase with time. Thus, the partial field or atomic entropy cannot be used as a direct measure of the particle–field entanglement. We find that, at least qualitatively, the difference between the total entropy and the sum of field and atom partial entropies can be used as an entanglement measure, when compared with an established entanglement measure based on the negativity of the eigenvalues of the partially transposed density matrix. We find a very strong sensitivity of the maximum generated entanglement on the decoherence and the chosen intrinsic decoherence parameter.  相似文献   

7.
We study experimentally the effect of ionization self-channeling of waves at the whistler frequencies in a nonuniform magnetic field. It is shown that the formed plasma nonuniformity localizes the radiation from a short high-frequency source inside a discharge channel stretched along an external magnetic field. We found a possibility to control the parameters of the formed plasma-wave channel as well as the dispersion characteristics and structure of wave fields in wide limits by varying the magnetic field in a specified spatial region. We propose a method for the formation of a plasma resonator and test this method in the laboratory experiment. The spatial plasma and field distributions in this resonator are similar to those along a geomagnetic field tube of the magnetospheric resonator. We reveal the plasma instability in such a resonator in the vicinity of the frequency of electron bounce oscillations between magnetic mirrors.  相似文献   

8.
We study the steady-state dynamics of the Hubbard model driven out of equilibrium by a constant electric field and coupled to a dissipative heat bath. For a very strong field, we find a dimensional reduction: the system behaves as an equilibrium Hubbard model in lower dimensions. We derive steady-state equations for the dynamical mean-field theory in the presence of dissipation. We discuss how the electric field induced dimensional crossover affects the momentum resolved and integrated spectral functions, the energy distribution function, as well as the steady current in the nonlinear regime.  相似文献   

9.
程冬  李亚  凤尔银  黄武英 《中国物理 B》2017,26(1):13402-013402
We present a detailed analysis of near zero-energy Feshbach resonances in ultracold collisions of atom and molecule,taking the He–PH system as an example, subject to superimposed electric and magnetic static fields. We find that the electric field can induce Feshbach resonance which cannot occur when only a magnetic field is applied, through couplings of the adjacent rotational states of different parities. We show that the electric field can shift the position of the magnetic Feshbach resonance, and change the amplitude of resonance significantly. Finally, we demonstrate that, for narrow magnetic Feshbach resonance as in most cases of ultracold atom–molecule collision, the electric field may be used to modulate the resonance, because the width of resonance in electric field scale is relatively larger than that in magnetic field scale.  相似文献   

10.
We investigate, using a nonlinear theory of laser physics, for a simple three-level atomic system the steady-state intensity behavior due to the effects of quantum coherence and decoherence. We find that a change from a noninversion laser to an inversion laser action can occur as the Rabi frequency of the driving field increases. The steady-state intensity of the laser field can arrive at a maximal value for a certain Rabi frequency of the driving field. We also find that the linear gain and the laser intensity tend to decrease for the linewidth of the driving field.  相似文献   

11.
We show that as soon as a linear quantum field on a stationary spacetime satisfies a certain type of hyperbolic equation, the (quasifree) ground- and KMS-states with respect to the canonical time flow have the Reeh–Schlieder property. We also obtain an analog of Borchers' timelike tube theorem. The class of fields we consider contains the Dirac field, the Klein–Gordon field and the Proca field. Received: 1 March 2000 / Accepted: 30 May 2000  相似文献   

12.
吴剑锋  薛迅 《中国物理 C》2006,30(10):950-955
由于宇宙常数的存在, 时空为渐近de Sitter(dS)的时空. 文中将静态dS度规作为时空的近似刻画, 研究了在此度规下的一个洛伦兹破缺的电动力学模型. 通过张量的标架场分解的方法, 得到了静态dS时空中的电磁场方程. 另外, 分别研究了静态dS时空中点电荷的静电场和圈电流的静磁场, 并且同时讨论了在此模型下的洛伦兹破缺效应.  相似文献   

13.
We present new, massive, non-ghost solutions for the Dirac field coupled self-consistently to gravity. We employ a gauge-theoretic formulation of gravity which automatically identifies the spin of the Dirac field with the torsion of the gauge fields. Homogeneity of the field observables requires that the spatial sections be flat. Expanding and collapsing singular solutions are given, as well as a solution which expands from a singularity before recollapsing. Torsion effects are only important while the Compton wavelength of the Dirac field is larger than the Hubble radius. We study the motion of spinning point-particles in the background of the expanding solution. The anisotropy due to the torsion is manifest in the particle trajectories.  相似文献   

14.
Godfrey Gumbs 《Physics letters. A》2009,373(30):2506-2515
We investigate the effects of spin-orbit interaction (SOI) and plane-perpendicular magnetic field on the conductivity of a two-dimensional electron system in the presence of one-dimensional electrostatic modulation. The calculations are performed when a low-intensity, low-frequency external electric field is applied. The Kubo formula for the conductivity is employed in the calculation. The single-particle eigenstates which depend on the strengths of the magnetic field, the SOI and modulation potential, are calculated and then used to determine the conductivity. We present numerical results for the conductivity along the channels as well as the tunneling conductivity perpendicular to the constrictions as functions of the modulation potential, the SOI and the magnetic field. We demonstrate that the effect of finite frequency is to related to the reduction of both the longitudinal and transverse conductivities.  相似文献   

15.
We consider the electric and magnetic energy densities (or equivalently field fluctuations) in the space around a point-like field source in its ground state, after having subtracted the spatially uniform zero-point energy terms, and discuss the problem of their singular behavior at the source’s position. We show that the assumption of a point-like source leads, for a simple Hamiltonian model of the interaction of the source with the electromagnetic radiation field, to a divergence of the renormalized electric and magnetic energy density at the position of the source. We analyze in detail the mathematical structure of such a singularity in terms of a delta function and its derivatives. We also show that an appropriate consideration of these singular terms solves an apparent inconsistency between the total field energy and the space integral of its density. Thus the finite field energy stored in these singular terms gives an important contribution to the self-energy of the source. We then consider the case of an extended source, smeared out over a finite volume and described by an appropriate form factor. We show that in this case all divergences in local quantities such as the electric and the magnetic energy density, as well as any inconsistency between global and space-integrated local self-energies, disappear.  相似文献   

16.
We discuss the concepts of Weyl and Riemann frames in the context of metric theories of gravity and state the fact that they are completely equivalent as far as geodesic motion is concerned. We apply this result to conformally flat spacetimes and show that a new picture arises when a Riemannian spacetime is taken by means of geometrical gauge transformations into a Minkowskian flat spacetime. We find out that in the Weyl frame gravity is described by a scalar field. We give some examples of how conformally flat spacetime configurations look when viewed from the standpoint of a Weyl frame. We show that in the non-relativistic and weak field regime the Weyl scalar field may be identified with the Newtonian gravitational potential. We suggest an equation for the scalar field by varying the Einstein-Hilbert action restricted to the class of conformally-flat spacetimes. We revisit Einstein and Fokker’s interpretation of Nordstr?m scalar gravity theory and draw an analogy between this approach and the Weyl gauge formalism. We briefly take a look at two-dimensional gravity as viewed in the Weyl frame and address the question of quantizing a conformally flat spacetime by going to the Weyl frame.  相似文献   

17.
The functional derivative of the effective action with respect to an external field is part of the equation of motion of this field if one-loop effects induced by quantum fluctuations or thermal fluctuations are included in minimizing the action of this field. Examples occur in all field theories displaying classical solutions or 3 - as the Nambu-Jona-Lasinio model 3 - selfconsistent field configurations. We describe here a numerical method for computing such functional derivatives; we use a fermion field with Yukawa interaction to an external field as an example which is sufficiently simple and sufficiently general. We compare the computed action to analytical estimates.  相似文献   

18.
《Nuclear Physics B》1986,263(2):413-432
We present models where the same scalar field is responsible for inflation and for the breaking of supersymmetry. The scale of supersymmetry breaking is related to the slope of the potential in the plateau region described by the scalar field during the slow rollover, and the gravitino mass can therefore be kept as small as MW, the mass of the weak gauge boson. We show that such a result is stable under radiative corrections. We describe the inflationary scenario corresponding to the simplest of these models and show that no major problem arises, except for a violation of the thermal constraint (stabilization of the field in the plateau region at high temperature). We discuss the possibility of introducing a second scalar field to satisfy this constraint.  相似文献   

19.
《Nuclear Physics B》1988,295(2):139-152
We show that some Weyl field theories arise as a quantum “linear” problem associated to some Kac-Moody algebras. We relate this quantum “linear” problem to the conformal invariant field theories studied by Dashen and Frishman and to the WZW field theory.  相似文献   

20.
We successively pass two V-type three-level atoms through a single-mode cavity field. Considering the field to be initially in a classical state, we evaluate various statistical properties such as the quasiprobability Q function, Wigner distribution, Mandel?s Q parameter and normal squeezing of the resulted field. We notice that the sequential crossing of atoms induces nonclassicality into the character of a pure classical state (coherent field). The initial thermal field shows sub-Poissonian as well as squeezing property after interacting with the V atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号