首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The energy absorption rate by a classical homogeneous plasma irradiated by a strong fluctuating laser field via inverse bremsstrahlung is considered. A chaotic-field model is used and comparison is made with the fundamental model of a purely coherent field. In the present analysis, the emphasis is put on the interplay between the laser field statistics and the plasma electron energy distribution. Numerical calculations are concerned with the dependence of the energy absorption rates on laser intensity and frequency. Laser intensity values up to 4.6\1015 W/cm2 are considered. The multiphoton structure of the energy absorption is analysed as well. Concerning the joint influence of the radiation and particle statistics on the absorption rate, the basic result may be stated as follows. For situations where the particle thermal velocityv T is larger than the oscillatory velocityv 0 imparted by the field (v T v 0, relatively weak field), the absorption rate is only weakly dependent on the field statistics. For situations, instead, whenv 0v T , which occurs for very high intensities, the reverse becomes true: now the initial particle velocity distribution plays the modest role of a velocity spread of an electron beam oscillating atv 0. In general, for very high intensities (v 0v T ), the energy absorption via bremsstrahlung becomes less effective because the high oscillatory velocityv 0 reduces the time available to electrons for the interaction with the ions, the third body which makes possible the exchange for energy between electrons and a radiation field. We report also, for the first time, results on the Marcuse effect for the case of a chaotic laser field, along with calculations of the absorption rate for a directed electron beam.  相似文献   

2.
Summary Ruby-laser pulses have been focused onto planar targets of beryllium in a magnetic field,B=17 kG. The field was oriented parallel to the direction of the incoming laser beam and perpendicular to the target surface. It was balancing the kinetic pressure of the plasma at a few millimeters from the target. Spectroscopic observations, both time integrated and time resolved, have shown the magnetic-confinement effect. In particular, a reduction of the transverse plasma-plume size and a density increase and slower expansion, in the presence of the magnetic field, have been observed. In the introduction, a short review of the most recent papers on the subject is reported.
Riassunto Gli impulsi luminosi di un laser a rubino sono stati focalizzati su bersagli piani di berillio in un campo magnetico di 17 kG. Il campo era orientato parallelamente alla direzione del fascio laser incidente e perpendicolarmente alla superficie del bersaglio ed era tale da bilanciare la pressione cinetica del plasma a qualche millimetro dal bersaglio. Osservazioni spettroscopiche, sia integrate che risolte nel tempo, hanno mostrato l’effetto di confinamento magnetico. In particolare, sono stati rilevati, in presenza del campo magnetico, una riduzione delle dimensioni trasversali del pennacchio di plasma ed un incremento della densità con rallentamento dell’espansione del plasma. Nell’introduzione è riportata una breve rassegna dei lavori piú recenti sullo stesso argomento.

Резюме Импульсы рубинового лазера фолусируются на плоские мишени бериллия в мапитном поле,B=17 кГс. Магнитное поле ориентировано параллельно направлению падающего лазерного лучка и перпендикулярно поверхности мишени. Кинетическое давление плазмы уравновешивается в нескольких миллиметрах от мишени. Спектроскопические наблюдения указывют на зффект мапнитнопо В частности, наблюдаются умеиьшение поперечнопо поперечнопо размера плазмы, увеличение плотности и расшение расширения в присутствии мапнитнопо поля. Во введении предлапается краткий обзор недавних работ на эту тему.
  相似文献   

3.
Summary Side emitted 3ω/2 radiation was studied by interacting 1.064 μm laser light with plasmas obtained from exploding thin foils. Both focusing (f/8) and collecting (f/7) optics were designed in order to reduce the instrumental bandwidth of the 3ω/2 spectrum. Time-resolved spectra and time-resolved images were obtained and analysed. All the observed spectral features, including the substantial lack of a ?blue? component, the amount of red shift and bandwidth, are consistent with the Karttunen theory of half-integer harmonics generated in plasmas. This theory takes into account the propagation of ω/2 plasmons produced by ?two plasmon decay? and their coupling with laser light.  相似文献   

4.
Summary Time-resolved images of the rear surface of thin metallic foils irradiated by 5 ns pulses of Nd-glass laser have been recorded within a spectral window from 5800 ? to 6900 ?. By approximating the plasma to a blackbody, the recorded intensities have been converted into temperature giving electron temperature up to 108 K and the results are compared with the predictions of the computer code, MEDUSA. The authors of this paper have agreed to not receive the proofs for correction.  相似文献   

5.
Perspectives of magnetic confinement for the increase of life times of laser plasmas generated by femtosecond laser pulses are considered. Possibilities that are provided by miniature magnetic cusp configurations with magnetic fields of moderate intensities (of order of Teslas) are investigated. The construction of micro-traps with permanent magnets, making it possible to increase neutron yield, seems to be very simple and possible for most modern “table top" laser experiments.  相似文献   

6.
A plasma is produced in air by using a high-intensity Q-switch Nd:YAG pulsed laser to irradiate a solid target, and the impulses delivering from the plasma to the target are measured at different laser power densities. Analysing the formation process of laser plasma and the laser supported detonation wave (LSDW) and using fluid mechanics theory and Pirri's methods, an approximately theoretical solution of the impulse delivering from the plasma to the target under our experimental condition is found. Furthermore, according to the formation time of plasma and the variation of pressure in plasma in a non-equilibrium state, a physical model of the interaction between the pulse laser and the solid target is developed. The plasma evolutions with time during and after the laser pulse irradiating the target are simulated numerically by using a three-dimensional difference scheme. And the numerical solutions of the impulse delivering from the plasma to the target are obtained. A comparison among the theoretical, numerical and experimental results and their analyses are performed. The experimental results are explained reasonably. The consistency between numerical results and experimental results implies that the numerical calculation model used in this paper can well describe the mechanical action of the laser on the target.  相似文献   

7.
We propose a plasma channel scheme to obtain an improved table-top laser driven fusion neutron yield as a result of explosions of large deuterium clusters irradiated by an intense laser pulse. A cylindrical plasma channel is created by two moderate intensity laser prepulses at the edge of a deuterium cluster jet along which an intense main laser pulse propagates several nanoseconds later. With the aid of this plasma channel, the main laser pulse will be allowed to deposit its energy into the central region of the deuterium gas jet where the cluster sizes are larger and the atomic density is higher. The plasma channel formation and its impact on the deuterium ion energy spectrum and the consequent fusion neutron yield have been investigated. The calculated results show that a remarkable increase of the table-top laser driven fusion neutron yield would be expected.  相似文献   

8.
B K Sinha  N Gopi  S K Goel 《Pramana》1979,12(4):377-390
Experiments performed with a 50 MW — 60 nsec ruby laser to estimate the temperature of the plasma produced on the planar targets of carbon as well as polyethylene are reported. Temperatures were estimated by two foil ratio technique. The temperatures of carbon and polyethylene plasma show aφ 2/9 dependance on flux in the flux regime of 1010 W/cm2 to 5 × 1011 W/cm2. The comparatively slower dependance is explained on the basis of purely collisional absorption, the effect being enhanced due to relatively long duration of the laser pulses. Scaling laws of plasma temperature against laser flux obtained by different workers in different flux regimes have been analysed on the basis of collisional and non-collisional absorption.  相似文献   

9.
The impedance mismatch effect in a two-layer (low density plastic foam, and solid aluminum, respectively) plane target compressed by a laser driven shock wave is considered. In such targets the ablative pressure generated by absorption of laser light in the foam layer is amplified when crossing the foam-aluminum interface. In this paper an analytical model is developed to evaluate the shock pressure in the aluminum layer as a function of the density and thickness of the foam layer and of the laser parameters. The model is in good agreement with previously published experimental results [A. Benuzzi et al., Phys. Plasmas 5, 2827 (1998)]. Received 20 January 2000 and Received in final form 16 May 2000  相似文献   

10.
Energetic ions have been obtained irradiating a tungsten target with a Q-switched Nd:Yag laser, 1064?nm wavelength, 9?ns pulse width, 900?mJ maximum pulse energy and power density of the order of 1010?W/cm2. The laser-target interaction induces a strong metal etching with production of plasma in front of the target. The plasma contains neutrals and ions with high charge state. Time-of-flight measurements are presented for qualitative analysis of the ion production. A cylindrical electrostatic ion analyzer permits measuring of the yield of emitted ions, the charge state of detected ions and the ion energy distribution. Measurements indicate that, at a laser fluence of the order of 100?J/cm2, the charge state may reach 9+ and the ion energy reaches about 5?keV. The ion energy distribution is given as a function of the charge state. Experimental results indicate that an electrical field is developed along the normal to the plane of the target surface, which accelerates the ions up to high velocity. The ion velocity distributions follow a “shifted Maxwellian distribution”, which the author has corrected for the Coulomb interactions occurring inside the plasma.  相似文献   

11.
Synthesis of single-wall carbon nanotubes (SWNTs) was carried out by an ablation method using a XeCl excimer laser. It was irradiated onto a graphite target containing Co and Ni at the temperatures of 1073, 1173, 1273, 1373, 1473, 1523 and 1623 K under the atmosphere (0.1 MPa) of Ar gas with the flow rate of 12 ml/min. The measurement by a scanning/transmission electron microscope and Raman spectroscopy found the formation of SWNTs with the diameter of about 1.3 nm and the length of about 2 μm in ablated carbonaceous soot. The ratio of peak intensity of 1590 cm−1 (G band) to that of 1335 cm−1 (D band) in the high frequency Raman spectra increased with increasing the ambient temperature. The radial breathing mode (RBM) in the low frequency Raman spectra shows that the mean diameter of SWNTs increased with increasing the ambient temperature.  相似文献   

12.
Direct-drive inertial confinement fusion (ICF) is expected to demonstrate high gain on the National Ignition Facility (NIF) in the next decade and is a leading candidate for inertial fusion energy production. The demonstration of high areal densities in hydrodynamically scaled cryogenic DT or D2 implosions with neutron yields that are a significant fraction of the “clean” 1-D predictions will validate the ignition-equivalent direct-drive target performance on the OMEGA laser at the Laboratory for Laser Energetics (LLE). This paper highlights the recent experimental and theoretical progress leading toward achieving this validation in the next few years. The NIF will initially be configured for X-ray drive and with no beams placed at the target equator to provide a symmetric irradiation of a direct-drive capsule. LLE is developing the “polar-direct-drive” (PDD) approach that repoints beams toward the target equator. Initial 2-D simulations have shown ignition. A unique “Saturn-like” plastic ring around the equator refracts the laser light incident near the equator toward the target, improving the drive uniformity. LLE is currently constructing the multibeam, 2.6-kJ/beam, petawatt laser system OMEGA EP. Integrated fast-ignition experiments, combining the OMEGA EP and OMEGA Laser Systems, will begin in FY08.  相似文献   

13.
The dynamics of clusters irradiated by a high-intensity ultrashort pulse laser has been studied using a fully relativistic three-dimensional Molecular Dynamics Model. A fast three-dimensional tree algorithm for computing the electrostatic force has been developed and compared with the conventional particle-particle method. The particle-particle method requires computation time, which scales as O(Np 2), and it is faster for small number of particles Np <103. In the opposite case of relatively large ensemble of particles Np >103, the preferred method is the tree algorithm whose computation time scales as O(Np log Np). The tree algorithm has been benchmarked against the particle-particle method for clusters composed of xenon and deuterium atoms and its accuracy and computation time have been analyzed. The optimum free parameter of the tree method has been determined to be θ≈0.5. We addressed the effects of boundary conditions by studying the contribution of adjacent clusters to the total electromagnetic force exerted on individual particles. We found that the adjacent clusters play a minor role in the overall cluster dynamics.  相似文献   

14.
In this work, wave formation in laser-produced plasma is investigated by an analysis of time-of-flight signal of the electron pulse. Electrons are extracted from a non-equilibrium plasma, generated by pulsed laser ablation on a solid Ge target. The process is represented by ion-acoustic waves, which are generated from an external perturbation, given by the positive bias voltage of a Faraday cup. The characteristics of the waves depend substantially on the geometry of the plasma expansion chamber and on laser fluence, but are independent on bias potential. A KrF excimer UV laser was employed for plasma generation. Measurements were performed at two different laser fluences, 4 and 7 J/cm2. The plasma created propagates with a mean velocity of about 1.1?×?104 m/s. A movable Faraday cup was employed in order to collect electrons at different bias voltage values.  相似文献   

15.
Silver clusters embedded in helium nanodroplets are exposed to intense femtosecond laser pulses (1013 - 1016 W/cm2). The signal of highly charged (q≤11) atomic fragments is maximized by delayed plasmon enhanced ionization using stretched laser pulses. Further details with respect to the dynamics of the charging process can be obtained, when the intensity distribution within the laser focus is taken into account. For the first time, the z-scan method is applied to clusters which offers a route to investigate the explicit dependence of the ion signals with respect to the laser intensity. By taking advantage of the volumetric weighting effect ionization thresholds are determined, yielding values well below 1014 W/cm2 for Agq+ ions with q≤11.  相似文献   

16.
Lead clusters are exposed to strong femtosecond light pulses. The dependence of the recoil energy on the charge state of the atomic ion is now investigated using a new detection setup, i.e., a Thomson analyser. First results show that in contrast to laser-induced overdense plasmas at surfaces the recoil energy distribution appears much narrower. Comparing free lead clusters with lead clusters embedded in large helium droplets, the charging dynamics show distinct differences on the femtosecond time scale. In the embedded case the maximum ionization enhancement is reached earlier.  相似文献   

17.
The reflection of a test electromagnetic wave normally impinging on a plasma surface is investigated within the formalism of the surface impedance. The plasma is assumed to possess an anisotropic two-temperature bi-Maxwellian electron velocity distribution function. The linearly polarized impinging wave during reflection transforms into an elliptically polarized one, the degree of ellipticity depending on the electron temperature anisotropy. Polarization modifications of the reflected wave are particularly important in the conditions of the anomalous skin-effect, when the influence of the wave magnetic field on the electron kinetics in the skin layer is strong. Relations are reported connecting the reflected wave basic parameters to those of the reflecting plasma surface, making possible, through the experimental determination of the reflected wave characteristics, to find the plasma electron concentration and the two effective temperatures. Received 21 May 2002 / Received in final form 21 August 2002 Published online 6 November 2002 RID="a" ID="a"e-mail: zarcone@unipa.it  相似文献   

18.
We exposed small size-controlled lead clusters with a few hundreds of atoms to laser pulses with peak intensities up to 1015 W cm-2 and durations between 60 fs to 2.5 ps. We measured kinetic energies and ionic charge of fragments as a function of the laser intensity and pulse duration. Highly charged Pbn+ ions up to n = 26 have been detected presenting kinetic energies up to 15 keV. For comparison with our experimental results, we have performed simulations of the laser coupling with a cluster-sized lead nanoplasma using a qualitative model that was initially proposed by Ditmire and co-workers at LLNL for the case of rare gas clusters. From these simulations we conclude that two mechanisms are responsible for the explosion dynamics of small lead clusters. As already observed for large rare gas clusters (n = 106), fragments with charge states below +10 are driven by Coulomb forces, whereas the higher charged fragments are accelerated by hydrodynamic forces. The latter mechanism is a direct consequence of the strong laser heating of the electron cloud in the nanoplasma arising from a plasmon-like resonance occurring at n e = 3n c. In order to obtain an optimized laser-nanoplasma coupling, our results suggest that the plasma resonance should occur at the peak intensity of the laser pulse. Due to inertial effects, even for such small-sized clusters, the observed optimum pulse duration is in the order of 1 ps which is in good agreement with our theoretical results. Received 18 March 2002 Published online 19 July 2002  相似文献   

19.
Collisionless absorption of linearly polarized electromagnetic wave in a plasma with anisotropic bi-Maxwellian electron velocity distribution is investigated. Due to the wave magnetic field influence on the electron kinetics in the skin layer, the wave absorption is found to significantly depend on the degree of the electron temperature anisotropy. Depending on the value of the skin layer anomaly parameter, and on the electron temperature anisotropy degree, the conditions are found when a significant decrease or increase of the collisionless absorption is expected. Received 25 January 2002  相似文献   

20.
Efficiency studies of laser driven thin metal disks acceleration using the first harmonic (λ1=1.315 μm) of the Prague Asterix Laser System (PALS) and subsequent craters creation produced by collisions of these disks with massive targets are presented. Several different disks made of aluminium and copper foils with diameters of 300 μm and 600 μm and thicknesses of 11 μm (Al) and 3.6 μ m (Cu) were employed. Disks were placed at the distance of either 100 μ m or 300 μm in front of aluminium massive targets. The following irradiation conditions were used: the laser beam energy of 120 J, the focal spot diameter of 200 μm, and the pulse duration of 0.4 ns (FWHM). A three-frame interferometric system was employed to determine electron density distributions in plasma corona. Shape and volume of craters were obtained by crater replica technology and microscopy measurements. The aim of these investigations was to analyse conditions leading to the most effective energy transfer in the process of collision of the accelerated disks with solid targets. The overall efficiency of these processes was characterized by the volume of craters produced in such targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号