首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
新型双核配合物的形成、与DNA的作用机制及荧光性质研究   总被引:5,自引:0,他引:5  
利用紫外、荧光和粘度等方法研究了含不同配体的钌(II)配合物[Ru(phen)2CImP]2+(CImP=3,4-二羟基-咪唑并[4,5-i][1,10]邻菲咯啉)和[Ru(phen)2TPPZ]2+(TPPZ=四吡啶[3,2-a:2',3'-c:3',2'-h:2',3'-j]吩嗪)与DNA的作用机制, 并研究了配合物与Zn2+配合后荧光性质变化. 结果表明[Ru(phen)2TPPZ]2+与DNA以插入模式作用, 而[Ru(phen)2CImP]2+与DNA则以沟面结合模式作用. 向配合物溶液中滴加Zn2+后, 配合物[Ru(phen)2TPPZ]2+和[Ru(phen)2CImP]2+均可以与Zn2+形成双核配合物[Ru(phen)2(TPPZ)Zn]4+和[Ru(phen)2(CImP)Zn]4+, 配合物的荧光减弱. 与DNA作用后, 配合物仍可以与Zn2+配位形成双核配合物, 但[Ru(phen)2(TPPZ)Zn]4+保持插入模式与DNA作用, 配合物的荧光减弱. 而[Ru(phen)2(CImP)Zn]4+与DNA则由沟面结合改为插入结合, 配合物的荧光增强.  相似文献   

2.
新型双核配合物的形成及荧光性质研究   总被引:1,自引:0,他引:1  
利用光谱学方法研究了[Ru(bpy)2TPPHZ]2+(TPPHZ=四吡啶[3,2-a: 2',3'-c: 3",2"-h: 2'",3'"-j]吩嗪)和[Ru(bpy)2ODHIP]2+(ODHIP=3,4-二羟基-咪唑并[4,5-f][1,10]邻菲咯啉)与Ni2+的配位情况及配位后的荧光性质变化, 探讨了配合物与Ni2+配位形成双核配合物后与DNA的作用机制变化. 结果表明, [Ru(bpy)2TPPHZ]2+和[Ru(bpy)2ODHIP]2+均可与Ni2+配位, 形成双核配合物[Ru(bpy)2(TPPHZ)Ni]4+和[Ru(bpy)2(ODHIP)Ni]4+, 配合物的荧光强度随着Ni2+浓度的增加而减弱. 与DNA作用后, 配合物仍可与Ni2+配位形成双核配合物, [Ru(bpy)2(TPPHZ)Ni]4+的荧光几乎完全消失, 同时配合物与DNA保持插入模式作用, 而配合物[Ru(bpy)2(ODHIP)Ni]4+与DNA的作用则由沟面结合改为插入结合, 同时配合物的荧光减弱.  相似文献   

3.
The coordination and bonding of equatorial hydroxide, carbonyl, cyanide (CN-), and isocyanide (NC-) ligands with uranyl dication, [UO2]2+, has been studied using density functional theory with relativistic effective core potentials. Good agreement is seen between experimental and calculated geometries of [UO2(OH)4]2-. Newly predicted ground-state structures of [UO2(OH)5]3-, [UO2(CO)4]2+, [UO2(CO)5]2+, [UO2(CN)4]2-, [UO2(CN)5]3-, [UO2(NC)4]2-, and [UO2(NC)5]3- are reported. Four-coordinate uranyl isocyanide complexes are the predicted gas-phase species while five-coordinate uranyl cyanide complexes are energetically favorable in aqueous solution. Small energy differences between cyanide and isocyanide complexes indicate the energetic feasibility of mixed cyanide and isocyanide complexes. A D2d uranyl tetrahydroxide is the dominant gas-phase and aqueous species, but formation of uranyl carbonyl complexes is seen to be exothermic in the gas-phase and endothermic in aqueous solution.  相似文献   

4.
Mononuclear and binuclear copper(II) complexes (1-8) with two ONS donor thiosemicarbazone ligands {salicylaldehyde 3-hexamethyleneiminyl thiosemicarbazone [H2L1] and salicylaldehyde 3-tetramethyleneiminyl thiosemicarbazone [H2L2]} have been prepared and physico-chemically characterized. IR, electronic and EPR spectra of the complexes have been obtained. The thiosemicarbazones bind to metal as dianionic ONS donor ligands in all the complexes except in [Cu(HL1)2] (2) and [Cu(HL2)2] (6). In compounds 2 and 6 the ligands are coordinated as monoanionic HL- ones. The magnetic susceptibility measurements indicate that all the complexes are paramagnetic. In complex [(CuL1)2] (1), the magnetic moment value is lower than the expected spin only value. In all the complexes g(||)>g( perpendicular)>2.0023 and G values within the range 2.5-3.5 are consistent with dx2-y2 ground state. The complexes were given the formula as [(CuL1)2] (1); [Cu(HL1)2] (2); [CuL1bpy] (3); [CuL1phen] (4); [CuL1gamma-pic].2H2O (5); [Cu(HL2)2] (6); [CuL2py].3H2O (7); [CuL2bipy] (8). The structure of the compound 8 have been solved by single crystal X-ray crystallography and was found to be distorted square pyramid around copper(II) ion.  相似文献   

5.
Density functional theory calculations on complexes of 4C1, 1C4 and 2SO ring conformations of methyl beta-D-xylopyranoside 1 with divalent metal cations, M = Mg2+, Ca2+, Zn2+, and Cd2+, are presented. Bridging and pendant cationic, [M(H2O)41]2+ and [M(H2O)(5)1]2+, as well as neutral complexes, [M(OH)2(H2O)(2)1] and [M(OH)2(H2O)(3)1], and neutral complexes involving a doubly deprotonated sugar, [M(H2O)(4)1(2-)], are considered. In aqueous and chloroform solution the stability of cationic and pendant neutral complexes is greatly diminished compared with gas-phase results. In contrast, bridging neutral complexes [M(OH)2(H2O)(2)1] and those of type [M(H2O)(4)1(2-)], are stabilized with increasing solvent polarity. Solvation also profoundly influences the preferred binding position and ring conformation. Compared with complexes of bare metal cations, additional ligands, e.g., H2O or OH-, significantly reduce the stability of 1C4 ring complexes. Irrespective of the cation, the most stable structure of bridging complexes [M(H2O)(4)1]2+ results from coordination of the metal to O3 and O4 of methyl beta-D-xylopyranoside in its 4C1 ring conformation.  相似文献   

6.
The alkyne functionalised bidentate N-donor ligand (2-propargyloxyphenyl)bis(pyrazolyl)methane was prepared in high yield from the reaction of (2-hydroxyphenyl)bis(pyrazolyl)methane with propargyl bromide in the presence of base. A series of transition-metal complexes including [MCl2] (M=Cu, Co, Ni, Zn, Pt), [M2](NO3)2 (M=Cu, Co, Ni, Zn), [Ag]NO3 and [Pd(dppe)](OTf)2 were prepared and characterised by spectroscopic techniques. In addition, ligand as well as the Co(II) and Zn(II) complexes [CoCl2]2, [ZnCl2] were structurally characterized by single-crystal X-ray diffraction. The organometallic gold(I) and platinum(II) acetylide complexes [Pz2CH(C6H(4)-2-OCH2C[triple bond, length as m-dash]CAuPPh3)] and trans-[{Pz2CHC6H(4)-2-OCH2C[triple bond, length as m-dash]C}2Pt(PPh3)2] were prepared from and [AuCl(PPh3)] and trans-[PtCl2(PPh3)2], respectively. Treatment of these complexes with [Pd(OTf)2(dppe)] or [Cu(MeCN)4]PF6 results in formation of the cationic, mixed-metal complexes, which were isolated (Pt/Pd, Au/Pt) or detected by electrospray mass spectrometry (Au/Cu, Pt/Cu).  相似文献   

7.
[60]- and [70]fullerenes have been shown to form 1:1 supramolecular complexes with (i) 24,26-dimethoxy-25,27-dihydroxy-5,11,17,23-tetra(4-tert-butyl)calix[4]arene (1) and (ii) 37,39,41-trimethoxy-38,40,42-trihydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (2) in CCl(4) medium by absorption spectroscopy. Charge transfer absorption bands of the complexes have been located in each of the cases (except [70]fullerene-2 complex) studied from which the vertical ionisation potential of 1 has been obtained. Formation constants of the complexes have been determined at four different temperatures from which the enthalpies and entropies of formation of the complexes have been obtained. Moreover, the formation constant of [70]fullerene-2 complex is higher than that of the [60]fullerene-1 and [60]fullerene-2 complexes at all the four temperatures studied. This has been accounted in terms of greater cavity size of 2 which is a calix[6]arene compared to 1 which is a calix[4]arene and also by the fact that a high degree of preorganisation takes place in case of 2 through intramolecular H-bonding at its lower rim.  相似文献   

8.
Trichlorostannyl complexes [M(SnCl3)(bpy)2P]BPh4 [M = Ru, P = P(OEt)(3), 1a PPh(OEt)2 1b; M = Os, P = P(OEt)3 2; bpy = 2,2'-bipyridine] were prepared by allowing chloro complexes [MCl(bpy)2P]BPh4 to react with SnCl2 in 1,2-dichloroethane. Bis(trichlorostannyl) compounds Ru(SnCl3)2(N-N)P2 [N-N = bpy, P = P(OEt)3 3a, PPh(OEt)2 3b; N-N = 1,10-phenanthroline (phen), P = P(OEt)3 4] were also prepared by reacting [RuCl(N-N)P3]BPh4 precursors with SnCl2.2H2O in ethanol. Treatment of both mono- 1a, 2 and bis 3a trichlorostannyl complexes with NaBH4 afforded mono- and bis(trihydridestannyl) derivatives [M(SnH3)(bpy)2P]BPh4 5, 6 and Ru(SnH3)2(bpy)P2 7[P = P(OEt)3], respectively. Treatment of 1a, 2 with MgBrMe gave the trimethylstannyl complexes [M(SnMe3)(bpy)2P]BPh4 8, 9 and treatment of 3a afforded the bis(stannyl) Ru(SnClMe2)2(bpy)P2 10 derivative. Alkynylstannyl complexes [M{Sn(C triple bond CR)3}(bpy)2P]BPh4 11-13 and Ru[Sn(C triple bond CR)3]2(N-N)P2 14-17(R = p-tolyl, Bu t; N-N = bpy, phen) were also prepared by allowing trichlorostannyl compounds 1-4 to react with Li+[RC triple bond C]* in thf. The complexes were characterised spectroscopically and by the X-ray crystal structure determination of [Ru(SnMe3)(bpy)2{P(OEt)3}]BPh4 derivative.  相似文献   

9.
Structural studies of metal complexes of five ditopic hexaazamacrocycles containing two pyridine rings ([n]py2N4 n= 18, 20, 22, 24 and 26) have been carried out. The synthesis of macrocycles [22]- to [26]-py2N4 are also reported. The protonation constants of the last three compounds and the stability constants of their complexes with Ni2+, Cu2+, Zn2+, and Pb2+ were determined at 25 degrees C in 0.10 mol dm(-3) KNO3 in aqueous solution. Our results with [22]py2N4 show significant differences from those described previously, while [24]py2N4 has not been studied before and [26]py2N4 is a new compound. Mononuclear and dinuclear complexes of the divalent metal ions studied with [22]- to [26]-py2N4 were found in solution. The stability constants for the ML complexes of the three ligands follow the Irving-Williams order: NiL2+ < CuL2+ > ZnL2+ > PbL2+, however for the dinuclear complexes the values for Pb2+ complexes are higher than the corresponding values for the Ni2+ and the Zn2+ complexes. The X-ray single crystal structures of the supramolecular aggregates [Cu2([20]py2N4)(H2O)4][Cu(H2O)6](SO4)3 x 3H2O and [Cu(2)([20]py(2)N4)(CH3CN)4][Ni([20]py2N4)]2(ClO4)8 x H2O, which are composed of homodinuclear [Cu2([20]py2N4])(H2O)4]4+ and [Cu2([20]py2N4])(CH3CN))4]4+, and mononuclear species, [Cu(H2O)6]2+ and [Ni([20]py2N4)]2+, respectively, assembled by an extensive network of hydrogen bonds, are also reported. In both homodinuclear complexes the copper centres are located at the end of the macrocycle and display distorted square pyramidal coordination environments with the basal plane defined by three consecutive nitrogen donors and one solvent molecule, water in and acetonitrile in . The macrocycle adopts a concertina-type conformation leading to the formation of macrocyclic cavities with the two copper centres separated by intramolecular distances of 5.526(1) and 5.508(7) A in 1a and 2a, respectively. The mononuclear complex [Ni([20]py2N4])]2+ displays a distorted octahedral co-ordination environment with the macrocycle wrapping the metal centre in a helical shape. EPR spectroscopy of the copper complexes indicated the presence of mono- and dinuclear species.  相似文献   

10.
Díez J  Gamasa MP  Panera M 《Inorganic chemistry》2006,45(25):10043-10045
Tetranuclear [Cu4I4{(S,S)-iPr-pybox}2] (1) and dinuclear [Cu2Cl-{(S,S)-iPr-pybox}2][CuCl2] (2) copper(I) complexes have been synthesized by reaction of iPr-pybox with CuI and CuCl, respectively. Furthermore, dinuclear [Cu2(R-pybox)2][PF6]2 [R-pybox = (R,R)-Ph-pybox (3), (S,S)-iPr-pybox (4)] and mononuclear complexes [Cu(R-pybox)2][PF6] [R-pybox = (R,R)-Ph-pybox (5), (S,S)-iPr-pybox (6)] have been prepared by reaction of [Cu(MeCN)4][PF6] and the corresponding pybox. The structures of complexes 1-3 have been determined by X-ray diffraction analyses.  相似文献   

11.
The coordination chemistry of bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (1, LH) with aluminum- and zinc-alkyls has been studied. Reaction of 1 with AlR3 affords the adducts [LH] x AlR3 (R = Me, 2; Et, 3), which undergo alkane elimination upon heating to yield the amido complexes [L]AlR2 (R = Me, 4; Et, 5). Reaction of LiO(iPrO)C=CMe2 with 2 proceeds via N-H deprotonation to give Li[L]AlMe3 (6), while the former enolate adds to 4 to generate [Me2C=C(OiPr)OLi] x [L]AlMe2 (7). Similarly, the 1:1 reaction of ZnEt2 with 1 gives [LH] x ZnEt2 (9), which is transformed into [L]ZnEt (10) upon heating. When an excess of ZnEt2 was used in the latter reaction, the bimetallic complex [L]ZnEt x ZnEt2 (11) was isolated beside 10. Performing the same reaction in the presence of O2 traces yielded selectively the dinuclear ethyl-ethoxide complex [L]Zn2Et2(mu-OEt) (12), which was alternatively prepared from the reaction of 10 and ZnEt(OEt). Zinc chloride complexes [LH] x ZnRCl (R = Et, 13; p-CH3C6H4CH2, 14) and [L]ZnCl (15) were prepared in high yields following similar strategies. Ethyl abstraction from 10 with B(C6F5)3 yields [L]Zn+EtB(C6F5)3- (16). All complexes have been characterized by multinuclear nuclear magnetic resonance (NMR), elemental analysis, and single-crystal X-ray diffraction studies for four-coordinate Al complexes 2, 4, and 6 and Zn complexes 9-12 and 14. Aluminate species 6 and 7 initiate the polymerization of methyl methacrylate, and the monomer conversions are improved in the presence of neutral complexes 2 or 4, respectively; however, these methyl methacrylate (MMA) polymerizations are uncontrolled. Polymerization of rac-lactide takes place at 20 degrees C in the presence of zinc ethoxide complex 12 to yield atactic polymers with controlled molecular masses and relatively narrow polydispersities.  相似文献   

12.
Triazenide [M(eta2-1,3-ArNNNAr)P4]BPh4 [M = Ru, Os; Ar = Ph, p-tolyl; P = P(OMe)3, P(OEt)3, PPh(OEt)2] complexes were prepared by allowing triflate [M(kappa2-OTf)P4]OTf species to react first with 1,3-ArN=NN(H)Ar triazene and then with an excess of triethylamine. Alternatively, ruthenium triazenide [Ru(eta2-1,3-ArNNNAr)P4]BPh4 derivatives were obtained by reacting hydride [RuH(eta2-H2)P4]+ and RuH(kappa1-OTf)P4 compounds with 1,3-diaryltriazene. The complexes were characterized by spectroscopy and X-ray crystallography of the [Ru(eta2-1,3-PhNNNPh){P(OEt)3}4]BPh4 derivative. Hydride triazene [OsH(eta1-1,3-ArN=NN(H)Ar)P4]BPh4 [P = P(OEt)3, PPh(OEt)2; Ar = Ph, p-tolyl] and [RuH{eta1-1,3-p-tolyl-N=NN(H)-p-tolyl}{PPh(OEt)2}4]BPh4 derivatives were prepared by allowing kappa1-triflate MH(kappa1-OTf)P4 to react with 1,3-diaryltriazene. The [Os(kappa1-OTf){eta1-1,3-PhN=NN(H)Ph}{P(OEt)3}4]BPh4 intermediate was also obtained. Variable-temperature NMR studies were carried out using 15N-labeled triazene complexes prepared from the 1,3-Ph15N=N15N(H)Ph ligand. Osmium dihydrogen [OsH(eta2-H2)P4]BPh4 complexes [P = P(OEt)3, PPh(OEt)2] react with 1,3-ArN=NN(H)Ar triazene to give the hydride-diazene [OsH(ArN=NH)P4]BPh4 derivatives. The X-ray crystal structure determination of the [OsH(PhN=NH){PPh(OEt)2}4]BPh4 complex is reported. A reaction path to explain the formation of the diazene complexes is also reported.  相似文献   

13.
Mononuclear palladium hydroxo complexes of the type [Pd(N[bond]N)(C(6)F(5))(OH)] [(N[bond]N = 2,2'-bipyridine (bipy), 4,4'-dimethyl-2,2'-bipyridine (Me(2)bipy), 1,10-phenanthroline (phen), or N,N,N',N'-tetramethylethylenediamine (tmeda)] have been prepared by reaction of [Pd(N[bond]N)(C(6)F(5))(acetone)]ClO(4) with KOH in methanol. These hydroxo complexes react, in methanol, with CO (1 atm, room temperature) to yield the corresponding methoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)Me)]. Similar alkoxycarbonyl complexes [Pd(N[bond]N)(C(6)F(5))(CO(2)R)] (N[bond]N = bis(3,5-dimethylpyrazol-1-yl)methane); R = Me, Et, or (i)Pr) are obtained when [Pd(N[bond]N)(C(6)F(5))Cl] is treated with KOH in the corresponding alcohol ROH and CO is bubbled through the solution. The reactions of [Pd(N[bond]N)(C(6)F(5))(OH)] (N[bond]N = bipy or Me(2)bipy) with CO(2), in tetrahydrofuran, lead to the formation of the binuclear carbonate complexes [(N[bond]N)(C(6)F(5))Pd(mu-eta(2)-CO(3))Pd(C(6)F(5))(N[bond]N)]. Complexes [Pd(N[bond]N)(C(6)F(5))(OH)] react in alcohol with PhNCS to yield the corresponding N-phenyl-O-alkylthiocarbamate complexes [Pd(N[bond]N)(C(6)F(5))[SC(OR)NPh]]. Similarly, the reaction of [Pd(bipy)(C(6)F(5))(OH)] with PhNCO in methanol gives the N-phenyl-O-methylcarbamate complex [Pd(bipy)(C(6)F(5))[NPhC(O)OR]]. The reactions of [(N[bond]N)Pd(C(6)F(5))(OH)] with PhNCS in the presence of Et(2)NH yield the corresponding thioureidometal complexes [Pd(N[bond]N)(C(6)F(5))[NPhCSNR(2)]]. The crystal structures of [Pd(tmeda)(C(6)F(5))(CO(2)Me)], [Pd(2)(Me(2)bipy)(2)(C(6)F(5))(2)(mu-eta(2)-CO(3))].2CH(2)Cl(2), and [Pd(tmeda)(C(6)F(5))[SC(OMe)NPh]] have been determined.  相似文献   

14.
Summary The Schiff bases a-(C5H4N)CMe=NNHCOR (R = Ph, 2-thienyl or Me), prepared by condensation of 2-acetylpyridine with the acylhydrazines RCONHNH2, coordinate in the deprotonated iminol form to yield the octahedral complexes, M[NNO]2 M = Co or Ni; [NNOH] = Schiff base and the square-planar complexes, Pd[NNO]Cl. The Schiff bases also coordinate in the neutral keto form yielding the octahedral complexes (M[NNOH]2)Z2 (M = Ni, Co or Fe; Z = C104, BF4 or N03) and complexes of the type M[NNOH]X2 (M = Ni, Co, Fe or Cu; X = Cl, Br or NCS). Spectral and x-ray diffraction data indicate that the complexes M[NNOH]X2 (M = Ni or Fe) are polymeric octahedral, as are the corresponding cobalt complexes having R = 2-thienyl. However, the cobalt complexes Co[NNOH]X2 (X = CI or Br; R = Ph or Me) and the copper complexes Cu[NNOH]CI2 (R = Ph, 2-thienyl or Me) are five-coordinate, while the thiocyanato complex Co[NNOH](NCS)2 (R = 2-thienyl) is tetrahedral.  相似文献   

15.
Cyclopalladated tetranuclear Pd(II) complexes, [Pd2(micro-Cl)2(Y)]2 (Y = L1 or L2; H2L1 = di(2-pyridyl)-2,2'-bithiophene; H2L2 = 5,5'-di(2-pyridyl)-2,2':5',2'-terthiophene), containing two pyridyl-alpha, alpha'-disubstituted derivatives of thiophene were prepared. Treating these products with PR3 and subsequently with NaN3 produced the dinuclear Pd-azido complexes [(PR3)2(N3)Pd-Y-Pd(N3)(PR3)2] (Y = L1 or L2) or a cyclometallated complex [(PR3)(N3)Pd-Y'-Pd(N3)(PR3)] (Y' = C,N-L2). Reactions of these Pd-azido complexes with CN-Ar (Ar = 2,6-Me(2)C(6)H(3), 2,6-i-Pr(2)C(6)H(3)) or R-NCS (R = i-Pr, Et, allyl) led to the complexes containing end-on carbodiimido groups [(PMe3)2(N[double bond]C[double bond]N-Ar)Pd-Y-Pd(N[double bond]C[double bond]N-Ar)(PMe3)2] or S-coordinated tetrazole-thiolato groups {(PMe3)2[CN4(R)]S-Pd-Y-Pd-S[CN4)(R)](PMe3)2}. Interestingly, when treated with elemental sulfur, the carbodiimido complexes transformed into the cyclometallated derivatives, [(PMe3)(N[double bond]C[double bond]N-Ar)Pd-Y'-Pd(N[double bond]C[double bond]N-Ar)(PMe3)] (Y' = C,N-L1, C,N-L2). We also report the preparation of linear, thienylene-bridged dinuclear Pd complexes [L2(N3)Pd-X(or X')-Pd(N3)L2] (L = PMe3 or PMe2Ph; H2X = 2,2'-bithiophene or H2X' = 2,2':5',2'-terthiophene) and their reactivity toward organic isocyanide and isothiocyanates.  相似文献   

16.
Reaction of UCl4 with calix[n]arenes (n = 4, 6 and 8) in THF or pyridine gave the mononuclear [UCl2(calix[4]arene--2H)(THF)2], bis-binuclear [U2Cl2(calix[6]arene--6H)(THF)3]2 and trinuclear [Hpy]6[U3Cl11(calix[8]arene--7H)] complexes, respectively, which are the first U(IV) complexes of O-unsubstituted calixarenes.  相似文献   

17.
Groysman S  Holm RH 《Inorganic chemistry》2007,46(10):4090-4102
Formate dehydrogenases are molybdenum- or tungsten-containing enzymes that catalyze the oxidation of formate to carbon dioxide. Among the significant characteristics of the mononuclear active sites are coordination of two pyranopterindithiolene ligands and selenocysteinate to the metal in oxidation states IV-VI. The first detailed investigation of the synthesis and structures of bis(dithiolene)tungsten selenolate and analogous thiolate complexes of relevance to formate dehydrogenases has been undertaken. Some 17 complexes of the types [WIV(QR)(S2C2Me2)2]-, [WVIO(QR)(S2C2Me2)2]-, and [WVIS(QR)(S2C2Me2)2]- (Q = S, Se; R = tert-butyl, 1-adamantyl) and the desoxo species [WVI(SR)(OSiR'3)(S2C2Me2)2] (R' = Me, Ph) were prepared. Ten structures of representative members of these types were determined; WIV complexes are square-pyramidal and WVI complexes are six-coordinate, with geometries intermediate between octahedral and trigonal-prismatic. Selenolate complexes are less stable than similar thiolate species; decomposition products were identified as [WV2(mu2-Q)2(S2C2Me2)2]2- and [WIV,V2(mu2-Se)(S2C2Me2)4]-. The several [MoIV(QR)(S2C2Me2)2]- complexes prepared earlier and the tungsten compounds synthesized in this work form a family of molecules whose overall stereochemistry and metric features are those expected in the absence of protein structural constraints.  相似文献   

18.
Chien PS  Liang LC 《Inorganic chemistry》2005,44(14):5147-5151
The first examples of mononuclear, structurally characterized triarylphosphine complexes of zirconium and hafnium are reported. The metathetical reactions of MCl4(THF)2 (M = Zr, Hf) with [iPrNP]Li(THF)2 ([iPrNP]- = N-(2-(diphenylphosphino)phenyl)-2,6-diisopropylanilide) or [MeNP]Li(THF)2 ([MeNP]- = N-(2-(diphenylphosphino)phenyl)-2,6-dimethylanilide) in toluene at -35 degrees C produced the corresponding [iPrNP]MCl3(THF) and [MeNP]2MCl2, respectively, in high yield. In contrast, attempts to prepare [MeNP]MCl3(THF) and [iPrNP]2MCl2 led to the concomitant formation of mono- and bis-ligated complexes, from which purification proved rather ineffective. The solution and solid-state structures of [iPrNP]MCl3(THF) and [MeNP]2MCl2 were studied by multinuclear NMR spectroscopy and X-ray crystallography. The geometry of these six-coordinate complexes is best described as a distorted octahedron in which the chloride ligands in [iPrNP]MCl3(THF) adopt a virtually meridional coordination mode whereas those in [MeNP]2MCl2 are trans to each other.  相似文献   

19.
The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.  相似文献   

20.
离子型有机锡化合物的合成及其生物活性   总被引:2,自引:1,他引:1  
钟桂云  孙丽娟 《应用化学》2011,28(4):387-393
利用有机锡卤化物与有机酸在有机胺存在下反应合成了一系列离子型有机锡化合物,分子通式为[HNR3][(PhCH2)3Sn(μ2-SCH2COO)Cl]、[HNR3][Ph3Sn)3(O2CCH2CO2)2]·CH3CH2OH和[HNR3] [MeCy2ClSnO2CCH2CO2SnClCy2Me]。化合物的体外抗肿瘤、杀菌和杀螨活性测试结果表明,部分化合物具有很好的生物活性。[HNR3][(Ph3Sn)3(O2CCH2CO2)2]·CH3CH2OH和[HNR3] [MeCy2ClSnO2CCH2CO2SnClCy2Me]配合物对人肺癌细胞株A-549、结肠癌细胞株HCT-8和肝癌细胞株Bel-7402的抑制率约为90%,[HNR3][MeCy2ClSnO2CCH2CO2SnClCy2Me]配合物对小麦赤霉、番茄早疫、芦笋茎枯、苹果轮纹、花生褐斑的杀死率都为100%,配合物[HNR3] [MeCy2ClSnO2CCH2CO2SnClCy2Me]的杀螨活性致死率大于90%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号