首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cationic calix[4]arene derivative binds both aliphatic and aromatic, carboxylate and sulfonate anions in aqueous solution thanks to concerted electrostatic and hydrophobic interactions. The sulfonate guest inclusion is affected by the different mobility of the host caused by the pH change.  相似文献   

2.
Abstract

Recognition ability of both cationic pillar[5]arene and calix[4]arene has been studied in aqueous media. Anion complexation can be evaluated from their ability to complex their counterions as well as an added external organic anion. DOSY NMR experiments and fluorescence quenching show that pillararenes have a larger ability for including their own counterions than calixarenes irrespective of the anion (tetrafluoroborate or chloride or bromide) and the structure of the cationic moiety (trimethylammonium or methylimidazolium). Counterion complexation shows a picture where four to five positive charges of the pillar[5]arene are neutralised, meanwhile only one positive charge of the calixarene is neutralised for a 1 mM solution of the macrocycle. Irrespective of the smaller net positive charge in the pillar[5]arene, its binding ability for organic anions (toluenesulfonate or hydroxybenzoate) is larger than for calix[4]arene allowing a better accommodation of the guest in its cavity. The larger separation between the cationic groups of the receptor and its electron-rich aromatic region improves the anion recognition ability for pillar[5]arene.  相似文献   

3.
Non-covalent inclusion complexes formed between amino acids and derivatized calix[6]arenes are observed in MALDI mass spectrometry. The methyl, ethyl, and propyl ester derivatives of calix[6]arene yielded amino acid complexes, while the smaller calix[4]arene analogs did not. Similarly the underivatized calix[6]arene and calix[4]arene did not produce complexes. Amino acid complexes were observed for nearly all 20 amino acids in time-of-flight (TOF) analysis. In Fourier transform mass spectrometry (FTMS) analysis, however, only the most basic amino acids arginine, histidine, and lysine formed stable adducts. The complexes were abundant under matrix-assisted laser desorption ionization (MALDI) conditions, which suggested favorable interactions between host and guest.  相似文献   

4.
Calix[4]arene derivatives with four anionic groups at their upper rim form discrete 1:1 complexes with complementary calix[4]arene derivatives bearing four cationic groups at their upper rim. Each cation is bound by two anions, and vice versa, in a mutual chelate arrangement, reinforced by a network of ionic hydrogen bonds. These multiple electrostatic interactions lead to the formation of highly stable capsule-like assemblies even in polar protic solvents such as methanol and water. In the capsule interior a cavity is formed that is in principle large enough for the encapsulation of small aliphatic and aromatic guests (170-230 A(3)). Monte Carlo simulations in water reproducibly lead to the same regular opimized structures. These differ mainly by their inner volume and flexibility, as demonstrated by molecular dynamics calculations. Most half-spheres can be synthesized by way of the tetrakis(chloromethyl) or the tetrabromocalix[4]arene intermediate. Oppositely charged calix[6]arenes also form strong complexes, but no indication was found for a lock in the cone conformation. The formation of the ball-shaped complexes from calix[4]arene building blocks was studied with Job plots, NMR titrations, NOESY, and variable-temperature experiments, as well as ESI-MS measurements. Investigations aimed at the inclusion of various guest molecules were carried out with alcohols, sulfoxides, benzene derivatives, and ammonium, as well as pyrazinium guests. Although binding isotherms were generated with cationic guests, these must be considered to be loosely associated around the seam rather than included inside the capsule.  相似文献   

5.
[reaction: see text] Optically pure calix[6]arenes bearing chiral amino arms 4, 7, and 10 have been synthesized in high yields from the known symmetrically 1,3,5-trismethylated calix[6]arene. For both compounds 7 and 10, the key step consists of an efficient selective alkylation on the narrow rim of the calix[6]arene with Ba(OH)2 as the base. All of these chiral calix[6]tris-amines possess a similar flattened cone conformation with the cavity occupied by the methoxy groups. In contrast to 4 and 7, upon protonation, the enantiopure calix[6]arene 10 can switch to the opposite flattened cone conformation through self-assembly of its ammonium arms in an ion-paired cap which closes the cavity. As shown by NMR host-guest studies and an X-ray structure, the obtained polarized host (10 x 3H+) behaves as a remarkable endo-receptor for small polar neutral molecules. Thanks to the tris-cationic chiral binding site of 10 x 3H+, it was shown that the guests experience a chiral environment upon inclusion. Finally, the first example of enantioselective molecular recognition inside the cavity of a calix[6]arene has been evidenced with a racemic 1,2-diol guest.  相似文献   

6.
Wide rim tetraurea derivatives (2a,b) have been prepared from a calix[4]arene rigidified in the cone conformation by two diethyleneglycol ether bridges between adjacent oxygens. In comparison to the analogous tetraurea derivatives (3a,b) of a tetrapentoxy calix[4]arene, 2a,b show an increased thermodynamic stability in mixtures of CDCl(3) and DMSO-d(6). Their kinetic stability as expressed by the rate of guest exchange (benzene or cyclohexane against the solvent benzene-d(6)) is also strongly increased by factors of 30-38. Noticeable differences for the inclusion of selected guests are found.  相似文献   

7.
The complex stability constants (Ka) and thermodynamic parameters (DeltaG degrees, DeltaH degrees, and TDeltaS degrees) for 1:1 complexation of water-soluble calix[4]arene, thiacalix[4]arene, and calix[5]arene sulfonates with pyridine and their methylated derivatives have been determined by means of isothermal titration calorimetry at pH 2.0 and 7.2 at 298.15 K, and their binding modes have been investigated by NMR spectroscopy. The results obtained show that sulfonatocalixarenes afford stronger binding ability toward pyridine guests at pH 2.0, attributable to the positive electrostatic interactions and the more extensive desolvation effects, but present higher molecular selectivity at pH 7.2 owing to the strengthened C-H...pi interactions. The pH-responsible binding ability and molecular selectivity are discussed from the viewpoint of electrostatic, pi-stacking, van der Waals interactions and size-fit relationship between host and guest. A close comparison further demonstrates that the C-H...pi interactions and van der Waals interactions play a more important role than pi...pi interactions in the present inclusion complexation.  相似文献   

8.
The characteristics of host-guest complexation between p-sulfonated calix[n]arene (SCnA, n = 4, 6) and Vitamin K(3) (VK(3)) were investigated by fluorescence spectrometry and absorption spectrometry using methylene blue (MB) as a probe. Interaction with MB and SCnA led to an obvious decrease in fluorescence intensity of MB, accompanying with shifts of emission peaks. Absorption peaks also showed interesting changes; however, when VK(3) was added, fluorescence intensity and absorbance recovered and a slight and slow red shift was observed. The obtained results showed that the inclusion ability of p-sulphonated calix[n]arenes towards VK(3) was the order: p-sulphonated calix[6]arene (SC6A) >p-sulphonated calix[4]arene (SC4A). Relative mechanism was proposed to explain the inclusion process.  相似文献   

9.
The pi-pi interaction-based inclusion complexation of calix[6]arene hexasulfonate as host with neutral aromatic guest molecules was studied in aqueous media. To vary the electron density on the guest's aromatic rings, the phenol parent compound was functionalized in the para-position with different electron-withdrawing groups, such as NO2 and Cl, as well as H and CH3 groups. To study the interaction between calixarene and the guests, PL, DSC, and quantum-chemical methods were used. The results indicate 1:1 stoichiometry for all examined host-guest complexes. Although the enthalpy change predicts strong interaction between the host and the guest, the Gibbs free energy change of the complex formation is small, resulting in a relatively low complex stability. This property is due to the high and negative entropy change during the complex formation. Comparing the thermodynamic parameters observed on the series of the guests, we observed a decrease of the enthalpy change when the electron density on the guest's aromatic ring increased. However, the Gibbs free energy and therefore, the stability of the complexes increased when the enthalpy change lowered. These unexpected results are based on the enthalpy-entropy compensation effect and probably due to the quite different entropy change related to the high and low electron density on the aromatic rings of different guest molecules. Using molecular dynamic calculations, a redistribution of the electron density of calixarene rings, followed by the reordering of the solvent molecules, was identified as a background of this unexpected entropy change at molecular level.  相似文献   

10.
The calix[4]arene dihydroxyphosphonic acid-1,10-phenanthroline complex shows caging of the guest molecules as a pi-pi stacked dimer in a cavity formed by intermolecular hydrogen bonds and aromatic walls formed by the calixarene.  相似文献   

11.
A calix[4]arene functionalized at one phenolic group with a pendant ethoxy acetate group, forms an inclusion complex that is stable even in the presence of other potential guest molecules.  相似文献   

12.
A hexameric resorcinarene nanocapsule in wet CDCl3 forms inclusion complexes of calix[4]arene with tetramethylammonium and trimethylsulfoxonium cations to give highly stable Russian-doll-type multicomponent assemblies. The 2D NOESY experiments revealed the size of the assembly, the close proximity of the encapsulated calix[4]arene molecule to the resorcinarene molecules of the capsule, and the inclusion of the tetramethylammonium cation in the calix[4]arene cavity.  相似文献   

13.
This article reports the synthesis and the properties of 5,11,17,23-tetra(t-butyl)-25,27-bis-(ethoxy-1,8-naphthalimide)-26,28-hidroxy-calix[4]arene and the formation of an inclusion compound in organic medium. This functionalized calix[4]arene was conceived as the association of a potential host species with a good fluorophore for optical sensoring purposes. Calix[4]-NI as we will call it, maintains its ‘cone-pinched’ configuration and exhibits typical naphthalimide fluorescence bands in non-polar solvents. Its ability to interact with guest species via hydrogen bonding in its endo-hydrophilic cavity to form inclusion compounds was verified with absorption and fluorescence measurements using N-ethanol-1,8-naphthalimide as guest species, which was projected to fit exactly the host cavity and to interact with its naphthalimide π electrons. For this reason, it was possible to follow the formation of the inclusion compound with electronic spectroscopy.  相似文献   

14.
李明轩  柳利  柳士忠 《有机化学》2004,24(9):1086-1090
用自识别自组装法合成了三种新型对叔丁基杯[8]芳烃/12-钨(钼)磷(硅)杂多酸超分子包合物,C88H115~116O8[XM12-040](X=P,Si;M=w,Mo),用元素分析,IR,UV,1H NMR,31P NMR,ESR,XPS,Fluorescence光谱进行了表征.结果表明,对叔丁基杯[8]芳烃主体化合物与12-钨(钼)磷(硅)杂多酸客体分子发生了主-客体包合反应,生成了稳定的发光包合物.  相似文献   

15.
The water‐soluble tetra‐, hexa‐ and octasulfonated calix[4]arenes, calix[6]arenes, and calix[8]arenes 1 – 3 , respectively, were investigated as potential synthetic receptors for photolabile cholinergic ligand A , a photolytic precursor of choline. Ligand A is a bifunctional molecule carrying a photolabile 2‐nitrobenzyl group at one end and a choline moiety at the other end. Results from NMR studies have shown that calixarenes 1 – 3 form stable 1 : 1 complexes with A , having similar binding potential to that observed with the cholinergic enzymes acetylcholinesterase and butyrylcholinesterase. Further studies have suggested that calix[8]arene forms a ditopic complex by binding concomitantly to both the cationic choline moiety and the aromatic photolabile group of A , whereas calix[4]arene and calix[6]arene form monotopic complexes with A . The ditopic complex between calix[8]arene and A results from mutually induced fitting process, while the monotopic complexes between calix[4]arene and A can be regulated by pH: at neutral pH, calix[4]arene specifically binds the cationic choline moiety, while, at acidic pH, it complexes unselectively both the cationic choline moiety and the aromatic group of A . Our results show that para‐sulfonated calixarenes are versatile artificial receptors which bind in various ways to the bifunctional photolabile cholinergic ligand A , depending on their size, geometry, and state of protonation.  相似文献   

16.
Equilibria for the formation of supramolecular complexes of [60]fullerene with a series of mono O-substituted calix[6]arenes, namely: (i) 37-methoxy-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (1), (ii) 37-allyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (2), (iii) 37-phenacyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (3), (iv) 37-ethylester-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (4) and (v) 37-benzyl-38,39,40,41,42-pentahydroxy-5,11,17,23,29,35-hexa(4-tert-butyl)calix[6]arene (5) have been studied in CCl4 medium by absorption spectroscopic technique. The stoichiometry has been found to be 1:1 ([60]fullerene:calix[6]arene) in each case. An absorption band due to charge transfer (CT) transition is observed in each case in the visible region. The vertical ionisation potentials (I(D)(v)) of all the calix[6]arenes under study have been estimated utilising CT transition energy. The experimental I(D)(v) values also yield a good estimate of the electron affinity of [60]fullerene. The degrees of CT in the ground state of the complexes have been found to be very low (about 0.15%). Resonance energy of the complexes have been estimated. Thermodynamic parameters for the supramolecular complex formation of [60]fullerene with mono O-substituted calix[6]arene receptors are reported. It is observed that among the calix[6]arenes under the present study, only 1 and 4 form inclusion complexes with [60]fullerene. This has also been substantiated by theoretical calculation using PM3 method. Thus presence of one substituent group (of different types) on the lower rim of the calix[6]arene molecule has been shown to govern the host-guest complexation process.  相似文献   

17.
《Tetrahedron: Asymmetry》2014,25(5):443-448
A proline–calix[4]arene thiourea host–guest complex catalyzed intermolecular aldol reaction of aromatic aldehydes with cyclohexanone has been developed. The anti-configured products were obtained in good yields and with high enantioselectivities. The reaction is proposed to work via a modified Houk–List model, where the carboxylate part of the proline constitutes as a supramolecular system with the thiourea. The outcome of the study indicates the influence of the calix[4]arene thiourea on both the reactivity and selectivity in a non-polar reaction medium, even in the presence of water at moderate temperatures.  相似文献   

18.
This article reports the synthesis and the properties of 5,11,17,23-tetra(t-butyl)-25,27-bis-(ethoxy-1,8-naphthalimide)-26,28-hidroxy-calix[4]arene and the formation of an inclusion compound in organic medium. This functionalized calix[4]arene was conceived as the association of a potential host species with a good fluorophore for optical sensoring purposes. Calix[4]-NI as we will call it, maintains its ‘cone-pinched’ configuration and exhibits typical naphthalimide fluorescence bands in non-polar solvents. Its ability to interact with guest species via hydrogen bonding in its endo-hydrophilic cavity to form inclusion compounds was verified with absorption and fluorescence measurements using N-ethanol-1,8-naphthalimide as guest species, which was projected to fit exactly the host cavity and to interact with its naphthalimide π electrons. For this reason, it was possible to follow the formation of the inclusion compound with electronic spectroscopy.in final form: 17 November 2004.This revised version was published online in July 2005 with a corrected issue number.  相似文献   

19.
The structure and dynamics of the dichloromethane solvent around the calix[4]arene units contained in the molecular actuator poly(calix[4]arene bis-bithiophene) have been examined using a 1-micros molecular dynamics simulation. Results indicate that a solvent molecule fills the cavity associated to the cone conformation of the macrocycle during a significant period of time, especially when the actuator is not contracted. The position of such solvent molecule presents a fourfold symmetry with a maximum orientation toward the center of each ring contained in the calix[4]arene. Frequently, the solvent molecule located inside the cavity is rapidly exchanged for another molecule of the bulk. Thus, the number of dichloromethane molecules that reside more than 0.5 ns inside the cavity is relatively small. Finally, we detected that a significant number of solvent molecules are able to migrate from the cavity of one calix[4]arene to the cavity/ies of other/s, suggesting that the dynamics of the bulk solvent is important for the formation of these inclusion complexes.  相似文献   

20.
The synthesis of new hosts specifically designed for the recognition of amides, characterized by two binding regions: a rigid calix[4]arene cavity and a sidearm, inserted at its rim, able to form strong hydrogen bonds, is described. The binding abilities of the new receptors toward amides of general structure R(1)CONR(2)R(3) have been investigated in CDCl(3) solution by (1)H NMR spectroscopy. When the additional binding site is the N-phenylureido group spaced by a methylene unit from the apolar cavity, binding constants up to 756 M(-)(1) were measured. Neither the two separate potential binding sites, nor the model host, where the calix[4]arene skeleton is flexible show detectable binding ability toward the series of guests examined. The rigidity of the calix[4]arene apolar cavity is the key control element in determining the efficiency of these molecular recognition processes. The presence of NH groups in the guest controls the efficiency and selectivity of binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号