首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
Triphenylamine ortho-tricarboxylic acid (1) has been synthesized and the crystal structure reported. This molecule is shown to spontaneously self-assemble into a hydrogen-bonded tetrahedron. Furthermore, Electrospray Ionization Mass Spectroscopy shows evidence for the stability of such aggregates from an ethanol/water solution.  相似文献   

2.
Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.  相似文献   

3.
Luminescent triple-stranded helicates, formed between Tb(iii) ions and bis-acylpyrazolones, were directly assembled into a 1-D polymeric system.  相似文献   

4.
This paper describes a new strategy to regulate multicomponent assembly from two kinds of pyridine-based ligands and cis-protected Pd(II) ions. The introduction of sterically hindered substituents to only one of the two ligands directs the complementary cis-coordination of the two lingads on the Pd(II) center, leading to the selective multicomponent assembly of two- and three-dimensional polynuclear Pd(II) complexes (e.g., square-, rectangular-, and trigonal prism-shaped molecules).  相似文献   

5.
6.
The bottom-up assembly of molecular building blocks, carrying specific functions, is a promising strategy for the construction of nanomachines. In this study we show how molecules with a mechanical function, i.e., being equipped with wheels, can be connected in a controlled way directly on a surface. By choosing suitable building blocks, assembled dimers and wagon trains can be formed, whereas the length of the chains can be limited by using a heterogeneous mixture of molecules. By using low temperature scanning tunneling microscopy, the chemical nature of the intermolecular connection is determined as a metal-ligand bond, which is stable enough to maintain the wagon train structure at room temperature. The intermolecular bonds can be controllably changed from trans to cis configurations thereby achieving bond angles of almost 90°.  相似文献   

7.
8.
9.
Triangular silver nanoplates exhibit excellent optical and catalytic properties in many fields, such as catalysts, sensors and bio-medicine. In this paper, triangular nanoplates were generated just in the presence of sodium citrate through a light-induced ripening process, which were converted from spherical silver nanoparticles by reducing silver nitrate with sodium borohydride. By using UV–Vis spectroscopy, particle size analyzer, transmission electron microscopy (TEM) and Ag+ concentration analysis, the effects of precursors during the preparation of triangular nanoplates were systematically investigated and the optimal experimental conditions were determined. Based on density functional theory (DFT), the adsorption energies of citrate ion, malate ion and tartronate ion on Ag (1 1 1), (1 1 0) and (1 0 0) were calculated. In addition, theoretical calculations coupled with experimental observations showed that citrate ion as capping agent could more preferentially bind to Ag (1 1 1) and thus blocked Ag (1 1 1) while only allowing extensive growth along the lateral direction. This well explains sodium citrate is an efficient agent in preparing triangular silver nanoplates.  相似文献   

10.
11.
A novel trimeric resorcinarene molecular box is induced during hydrothermal synthesis by use of the 3-fold symmetric tripyridyl triazine linker molecule.  相似文献   

12.
13.
The ability to reversibly switch the surface porosity of nanocages would allow controllable matter transport in and out of the nanocages. This would be a desirable property for many technological applications, such as drug delivery. To achieve such capability, however, is challenging. Herein we report a strategy for reversibly changing the surface porosity of a self-assembled DNA nanocage (a DNA tetrahedron) that is based on DNA hydridization and strand displacement. The involved DNA nanostructures were thoroughly characterized by multiple techniques, including polyacrylamide gel electrophoresis, dynamic light scattering, atomic force microscopy, and cryogenic electron microscopy. This work may lead to the design and construction of stimuli-responsive nanocages that might find applications as smart materials.  相似文献   

14.
Photochemical control of vesicle disintegration and reformation in aqueous solution was examined using a mixture of 4-butylazobenzene-4'-(oxyethyl)trimethylammonium bromide (AZTMA) as the photoresponsive cationic surfactant and sodium dodecylbenzenesulfonate (SDBS) as the anionic surfactant. Spontaneous vesicle formation was found in a wide-ranging composition of the trans-AZTMA/SDBS system. AZTMA molecules constituting vesicles underwent reversible trans-cis photoisomerization when irradiated with ultraviolet and visible light. Transmission electron microscopy observations using the freeze-fracture technique (FF-TEM) showed that UV light irradiation caused the vesicles to disintegrate into coarse aggregates and visible light irradiation stimulated the reformation of vesicles (normal control). A detailed investigation of the phase state and the effects of UV and visible light irradiation on the AZTMA/SDBS system with the use of electroconductivity, dynamic/static light scattering, and surface tension measurements and FF-TEM observations revealed that in the AZTMA-rich composition (AZTMA/SDBS 9:1) a micellar solution before light irradiation became a vesicular solution after UV light irradiation and visible light irradiation allowed the return to a micellar solution (reverse control). Thus, we could photochemically control the disintegration (normal control) and reformation (reverse control) of vesicles in the same system.  相似文献   

15.
Resorcinarene-based cavitands functionalized with acetamido groups capable of self-complementary hydrogen-bond interactions, were synthesized in order to construct supramolecular capsules. The 1,3-bifunctionalized cavitand produced a polymeric assembly, whereas the tetra-functionalized analogue yielded a discrete capsule held together via N-H···O hydrogen bonds. The ethynyl species attached to the rim of these host molecules deepen each cavitand and expands the volume of the resulting capsule.  相似文献   

16.
Dong H  Yang J  Liu X  Gou S 《Inorganic chemistry》2008,47(8):2913-2915
Interaction of a flexible thioether ligand with mercury(II) acetate and iodide, respectively, yielded two compounds with structural motifs of a macrocycle and a 1D polymer, whose structural patterns were dominated by anions and could be reversibly changed.  相似文献   

17.
The hexagonal columnar phase (HI) of an aqueous formulation of octyl β-glucoside with 67 % lipid content was modelled and 15-ns molecular dynamics simulation was performed. Initial investigations on the aggregation size led to good correlation of simulation and experimental d-spacing for a 12 molecule cylinder core. The corresponding hexagonal phase was stable over the entire simulation time and provided conclusive local density profiles. Hydrogen bonding analyses showed only minor differences in the bonding profile between the hexagonal and a previously reported micellar phase. However, the glycoside interaction decreases with increasing curvature, i.e. from a lamellar assembly over the hexagonal phase to the micelle, while the opposite behaviour applies for interactions with water. A view into the water dynamics revealed an anisotropic-correlated diffusion process with higher mobility along the cylinder axes than perpendicular to them.  相似文献   

18.
Six inorganic-organic bismuth 2,6-pyridinedicarboxylate (pdc) compounds, [Bi(2,6-pdc)(3)]·3(dma), 1, [Bi(2,6-pdc)(3)]·3(dma)·2(H(2)O), 2, [Bi(2,6-pdc)(2)(dmf)]·(dma), 3, Bi(2,6-pdc)(2,6-pdcme)(MeOH), 4, [LiBi(2,6-pdc)(3)(H(2)O)]·2(dma), 5, and Li(5)Bi(2,6-pdc)(4)(H(2)O)(2), 6 (where dma = dimethyl ammonium cation, dmf = dimethylformamide and 2,6-pdcme = 6-methyl-oxycarbonyl pyridine 2-carboxylate) have been synthesized under solvothermal conditions and their structures determined by single crystal X-ray diffraction. Compounds 1-4 have molecular structures whereas compounds 5 and 6 form one- and three-dimensional frameworks, respectively. Compounds 1 and 2, both having similar monomeric bismuth coordination units, which are connected non-covalently into a (4,4)-connected square lattice by H-bonding interactions through dma cations. Compounds 3 and 4, both have a similar dimeric bismuth coordination unit. In 3, the dimers are connected into a one-dimensional chain by H-bonding interactions through dma cations. In the partially esterified and neutral 4, there was no such H-bonding interactions due to the absence of any dma cations. Compounds 5 and 6 have a similar monomeric bismuth coordination unit to that seen in 1 and 2. In 5, the monomers are connected through lithium cations into one-dimensional chains, which further interact non-covalently by H-bonding interactions through dma cations. In the lithium-rich 6, the monomers are connected by the lithium cations and 2,6-pdc anions into a three dimensional structure with intramolecular H-bonding interactions involving the water molecules. The non-porous 5 and 6 exhibit a reasonable amount of H(2) and CO(2) sorptions, respectively. Tb(3+)- and Eu(3+)-doped and co-doped 4 and 5 emit characteristic sensitized green/red/yellow-orange luminescence.  相似文献   

19.
The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.  相似文献   

20.
A strategy for gold nanoparticle (AuNP) assembly driven by a dynamic DNA-fueled molecular machine is revealed here. In this machine, the aggregation of DNA-functionalized AuNPs is regulated by a series of toehold-mediated strand displacement reactions of DNA. The aggregation rate of the AuNPs can be regulated by controlling the amount of oligonucleotide catalyst. The versatility of the dynamic DNA-fueled molecular machine in the construction of two-component "OR" and "AND" logic gates has been demonstrated. This newly established strategy may find broad potential applications in terms of building up an "interface" that allows the combination of the strand displacement-based characteristic of DNA with the distinct assembly properties of inorganic nanoparticles, ultimately leading to the fabrication of a wide range of complex multicomponent devices and architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号