首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 5-(arylthio)-2,4-diaminoquinazolines are known as selective inhibitors of dihydrofolate reductase (DHFR) from Candida albicans. We have performed docking and molecular dynamics simulations of these inhibitors with C. albicans and human DHFR to understand the basis for selectivity of these agents. Study was performed on a selected set of 10 compounds with variation in structure and activity. Molecular dynamics simulations were performed at 300 K for 45 ps with equilibration for 10 ps. Trajectory data was analyzed on the basis of hydrogen bond interactions, energy of binding and conformational energy difference. The results indicate that hydrogen bonds formed between the compound and the active site residues are responsible for inhibition and higher potency. The selectivity index, i.e the ratio of I50 against human DHFR to I50 against fungal DHFR, is mainly determined by the conformation adapted by the compounds within the active site of two enzymes. Since the human DHFR active site is rigid, the compound is trapped in a higher energy conformation. This energy difference between the two conformations E mainly governs the selectivity against fungal DHFR. The information generated from this analysis of potency and selectivity should be useful for further work in the area of antifungal research.  相似文献   

2.
R67 dihydrofolate reductase (DHFR) is a novel enzyme that confers resistance to the antibiotic trimethoprim. The crystal structure of R67 DHFR displays a toroidal structure with a central active-site pore. This homotetrameric protein exhibits 222 symmetry, with only a few residues from each chain contributing to the active site, so related sites must be used to bind both substrate (dihydrofolate) and cofactor (NADPH) in the productive R67 DHFR?NADPH?dihydrofolate complex. Whereas the site of folate binding has been partially resolved crystallographically, an interesting question remains: how can the highly symmetrical active site also bind and orient NADPH for catalysis? To model this ternary complex, we employed DOCK and SLIDE, two methods for docking flexible ligands into proteins using quite different algorithms. The bound pteridine ring of folate (Fol I) from the crystal structure of R67 DHFR was used as the basis for docking the nicotinamide-ribose-Pi (NMN) moiety of NADPH. NMN was positioned by both DOCK and SLIDE on the opposite side of the pore from Fol I, where it interacts with Fol I at the pore's center. Numerous residues serve dual roles in binding. For example, Gln 67 from both the B and D subunits has several contacts with the pteridine ring, while the same residue from the A and C subunits has several contacts with the nicotinamide ring. The residues involved in dual roles are generally amphipathic, allowing them to make both hydrophobic and hydrophilic contacts with the ligands. The result is a `hot spot' binding surface allowing the same residues to co-optimize the binding of two ligands, and orient them for catalysis.  相似文献   

3.
Human microsomal cytochrome P450s participate in drug metabolism and detoxification. Among them, CYP3A4 is the most important isoform for drug-drug interactions. To gain a better understanding of the active site, a homology model of CYP3A4 was constructed based on the crystallographic coordinates of mammalian CYP2C5. The putative active site is much larger than that of CYP2C5 and is divided into three parts (i.e. a proximal and two distal sites from the heme). Most residues reported to be important for ligand-binding are located in the active site of the model. Moreover, some inhibitors (paclitaxel etc.) docked into the model have complementary shapes to the pocket. Pharmacophore docking of 14 substrates was also performed using Ph4Dock of MOE. Calculated interaction energies showed a moderate correlation with the logarithm of apparent K(m) values. These results suggest that this model is reliable enough to be used in the design of compounds for removing undesirable CYP3A4 inhibition.  相似文献   

4.
Summary The inhibition of Pneumocystis carinii dihydrofolate reductase (DHFR) continues to be the major treatment strategy for P. carinii pneumonia (PCP). The design of new anti-pneumocystis agents would be significantly enhanced by the availability of a 3D model of the methotrexate (MTX) binding site of the P. carinii DHFR. However, an X-ray crystal structure of the P. carinii DHFR is not yet available. Alignment of the amino acid sequences of P. carinii and Lactobacillus casei DHFRs indicates that the two proteins show approximately 80% homology among MTX binding-site residues. This high level of homology suggests that the L. casei DHFR MTX binding-site structure could serve as a structural template in developing a model of the P. carinii DHFR MTX binding site. Therefore, the X-ray crystal structure of L. casei DHFR was used to develop a 3D model of the methotrexate binding site of P. carinii DHFR. The molecular modeling and dynamics software QUANTA/CHARMm was used. Amino acid residue mutations and deletions were performed using QUANTA and macromolecular minimizations were achieved with CHARMm. The MTX binding-site residues of L. casei DHFR were mutated to the corresponding residues of the P. carinii DHFR sequence. The resulting structure was extensively minimized. The resulting P. carinii MTX binding-site model showed significant differences in hydrogen-bonding patterns from the L. casei MTX binding site. Also, the P. carinii site is more hydrophobic than the corresponding L. casei site. Analysis of atom-to-atom close contacts between methotrexate and protein binding-site residues indicates that the P. carinii MTX binding-site complex is primarily stabilized by hydrophobic interactions, while the L. casei complex is mostly stabilized by electrostatic interactions. The model is consistent with the observed increased sensitivity of P. carinii DHFR to lipid-soluble inhibitors and provides a rational basis for the design of new anti-pneumocystis agents.  相似文献   

5.
OU Min-Rui  LI Jun-Qian 《结构化学》2012,31(11):1618-1626
Steroid 5alpha-reductase of human is an enzyme in the biosynthetic pathway from testosterone (T) to dihydrotestosterone (DHT). Up to now, no crystal structure of this enzyme has been reported. However, knowledge of the tertiary structure and possible active sites is essential for understanding the catalysis mechanism and for the design of inhibitors. A model with putative active sites has been created and evaluated by using homology modeling and molecular docking techniques based on the bioinformatics knowledge. The homology model is optimized in Swiss PDB Viewer with MM method and substrate structures before docking are also optimized on HF/6-31G. The active site for the docking of NADP, T, DHT and Finasteride is located near the N-terminus of enzyme. Four active amino acids in the active site are identified as Ala26, Arg53, Arg176 and Lys177. Reaction procedure, binding pattern of active sites, the types of weak interaction and so on are also discussed.  相似文献   

6.
In the present study a series of Schiff bases of indoline-2,3-dione were synthesized and investigated for their Mtb gyrase inhibitory activity. Promising inhibitory activity was demonstrated with some of these derivatives, which exhibited IC(50) values ranging from 50-157 mM. The orientation and the ligand-receptor interactions of such molecules within the Mtb DNA gyrase A subunit active site were investigated applying a multi-step docking protocol using Molecular Operating Environment (MOE) and Autodock4 docking software. The results revealed the importance of the isatin moiety and the connecting side chain for strong interactions with the enzyme active site. Among the tested compounds the terminal aromatic ring benzofuran showed the best activity. Promising new leads for developing a novel class of Mtb gyrase inhibitors were obtained from Schiff bases of indoline-2,3-dione.  相似文献   

7.
In this study, ligand based comparative molecular field analysis (CoMFA) with five principal components was performed on class of 3′, 4′-dihydroxyflavone derivatives for potent rat 5-LOX inhibitors. The percentage contributions in building of CoMFA model were 91.36% for steric field and 8.6% for electrostatic field. R2 values for training and test sets were found to be 0.9320 and 0.8259, respectively. In case of LOO, LTO and LMO cross validation test, q2 values were 0.6587, 0.6479 and 0.5547, respectively. These results indicate that the model has high statistical reliability and good predictive power. The extracted contour maps were used to identify the important regions where the modification was necessary to design a new molecule with improved activity. The study has developed a homology model for rat 5-LOX and recognized the key residues at the binding site. Docking of most active molecule to the binding site of 5-LOX confirmed the stability and rationality of CoMFA model. Based on molecular docking results and CoMFA contour plots, new inhibitors with higher activity with respect to the most active compound in data set were designed.  相似文献   

8.
利用同源模建和分子动力学模拟方法构建了人类丝氨酸消旋酶(hSR)的三维结构, 并利用profile-3D和procheck方法评估了模型的可靠性. 在此基础上用分子对接程序(affinity)将多肽类抑制剂A和B分别与hSR进行对接, 获得了其复合物结构的理论模型. 通过配体与受体之间相互作用能和结构分析给出了此类抑制剂与hSR的具体结合方式, 明确了hSR与此类抑制剂结合时起重要作用的氨基酸残基, 为基于人类丝氨酸消旋酶三维结构的药物设计提供重要的参考信息.  相似文献   

9.
With tuberculosis still being one of leading causes of death in the world and the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), researchers have been seeking to find further therapeutic strategies or more specific molecular targets. PknB is one of the 11 Ser/Thr protein kinases of Mtb and is responsible for phosphorylation-mediated signaling, mainly involved in cell wall synthesis, cell division and metabolism. With the amount of structural information available and the great interest in protein kinases, PknB has become an attractive target for drug development. This work describes the optimization and application of an in silico computational protocol to find new PknB inhibitors. This multi-level computational approach combines protein–ligand docking, structure-based virtual screening, molecular dynamics simulations and free energy calculations. The optimized protocol was applied to screen a large dataset containing 129,650 molecules, obtained from the ZINC/FDA-Approved database, Mu.Ta.Lig Virtual Chemotheca and Chimiothèque Nationale. It was observed that the most promising compounds selected occupy the adenine-binding pocket in PknB, and the main interacting residues are Leu17, Val26, Tyr94 and Met155. Only one of the compounds was able to move the active site residues into an open conformation. It was also observed that the P-loop and magnesium position loops change according to the characteristics of the ligand. This protocol led to the identification of six compounds for further experimental testing while also providing additional structural information for the design of more specific and more effective derivatives.  相似文献   

10.
Docking and pharmacophore screening tools were used to examine the binding of ligands in the active site of thymidine monophosphate kinase of Mycobacterium tuberculosis. Docking analysis of deoxythymidine monophosphate (dTMP) analogues suggests the role of hydrogen bonding and other weak interactions in enzyme selectivity. Water-mediated hydrogen-bond networks and a halogen-bond interaction seem to stabilize the molecular recognition. A pharmacophore model was developed using 20 dTMP analogues. The pharmacophoric features were complementary to the active site residues involved in the ligand recognition. On the basis of these studies, a composite screening model that combines the features from both the docking analysis and the pharmacophore model was developed. The composite model was validated by screening a database spiked with 47 known inhibitors. The model picked up 42 of these, giving an enrichment factor of 17. The validated model was used to successfully screen an in-house database of about 500,000 compounds. Subsequent screening with other filters gave 186 hit molecules.  相似文献   

11.
组蛋白去乙酰化酶(HDACs)是近年来治疗肿瘤的重要靶标之一.由于HDACs包含多种亚型,且各亚型的生理功能存在一定的差异,其选择性抑制剂的开发已成为当前的研发热点.我们通过同源模建的HDAC1结构,与已有的HDAC8晶体结构的活性位点进行比较分析,探讨了对两者选择性有重要影响的残基,为基于受体的选择性抑制剂研究提供重要信息.同时选择了52个HDAC抑制剂,分别建立了HDAC1、HDAC8的活性值与对接打分值的线性回归模型.所建的HDAC1和HDAC8的线性构效关系模型的非交叉验证系数R2分别为0.82和0.80,表明具有一定的统计学意义.利用所建模型对已设计合成的化合物进行了预测,预测结果对HDAC1、HDAC8选择性抑制剂的优化改造提供了一定的指导意义.  相似文献   

12.
中药中黄酮类化合物和白藜芦醇等活性成分对血栓素A2受体具有抑制作用,但具体机理不详.本研究通过同源模建方法,以墨鱼视紫红质蛋白为模板,构建血栓素A2受体的蛋白质结构模型.并使用分子对接方法研究中药活性成分白藜芦醇和芹菜苷元与血栓素A2受体模型的作用方式,据此建立药效团模型,筛选其他潜在的血栓素A2受体抑制剂.结果表明:白藜芦醇等中药活性成分能与血栓素A2受体活性口袋中的残基发生氢键作用,结合方式与血栓素相似.血栓素与Ser201、Leu198、Arg295和Thr298发生氢键作用,白藜芦醇等活性成分与Ser201、Leu198和Arg295发生氢键作用.建立的药效团模型由7个药效元素以及排斥性空间元素组成,经测试对高活性的血栓素A2受体抑制剂有比较好的选择性.使用该药效团模型对中药天然产物数据库进行筛选,命中了一批可能具有血栓素A2受体抑制作用的活性化合物.其中一些已经报道有抑制血小板凝聚活性.本研究表明血栓素A2受体可能是活血化瘀类中药的一个潜在的靶点.  相似文献   

13.
利用同源模建和动力学模拟方法,模建了furcatin水解酶(FH)的三维结构.并在这基础上,分析了活性位点的组成和结构.研究了furcatin与FH的对接.结果表明,Ser84,Arg146,Thr189,Thr234和Gly372在复合物的形成过程中起重要的作用.其中,Ser84,Argl46和Thr189是在FH的活性口袋的二糖部分的亚单位一1中重要的氨基酸,Thr234和Gly372是亚单位-2中重要的氨基酸.  相似文献   

14.
通过同源模建和分子动力学模拟构建了人类胞外信号调节激酶1(hERK1)的三维结构,并利用profile-3D和procheck方法评估了模型的合理性.对所得的结构使用分子对接程序Affinity和CDOCKER进行了两种抑制剂的对接.结果显示这两种抑制剂与酶的结合方式相似,它们均与残基K36,Q87之间存在氢键作用,二者取代基的不同导致了抑制能力的差别.基于对接结果分析,对已知抑制剂进行结构改造,得到了一个理论上结合能力更强的抑制剂.它在保持与K36和Q87之间氢键的同时,又与残基D93,K96,S135形成了四条氢键,显著提高了与酶的相互作用.对接相互作用能显著下降,MM-PBSA结合自由能降为负值,这些均体现了抑制能力的提高.本工作对于针对该酶的抑制剂设计和相关疾病的新药开发具有理论指导价值.  相似文献   

15.
Tribbles homolog 3 (TRIB3) protein is inhibiting the insulin signaling by directly binding to the Akt/PKB leading to insulin resistance in the pancreas causing type 2 diabetes mellitus. Hence, TRIB3 protein is considered as a possible drug target for the new lead identification against type 2 diabetes. In the present study, the homology model of TRIB3 protein was generated to explore its biochemical function and molecular interactions in the new lead identification. The energy minimization of TRIB3 protein was carried out and evaluated by validation protocols for structure reliability. The druggable binding site of TRIB3 protein was identified for the virtual screening and molecular docking studies. The Asinex-fragments library of 22634 small molecules was docked at TRIB3 active site using the Glide module to identify new chemical entities. A total of 9 molecules were identified as final hits from virtual screening and their potency was ranked using Glide score, Glide energies, and residues interactions. The 6 prioritized lead molecules were further optimized using AutoDock, Prime MM/GBSA, and percentage of human oral absorption for the identification of potential leads. The molecules L2, L5, and L6 are identified as lead inhibitors and are showing consistent interactions with key residues Glu194 and Lys196 of TRIB3 protein. The identified potential leads were analyzed by ADME properties for their drug likeness and HergIC50 values are predicted for the prevention of preclinical failures. The present work sheds light on the identification of the best lead molecules against TRIB3 protein and offers a route to design as novel potential drug candidates for T2DM.  相似文献   

16.
Cancer is characterized by abnormal growth of cells. Targeting ubiquitin proteins in the discovery of new anticancer therapeutics is an attractive strategy. The present study uses the structure-based drug discovery methods to identify new lead structures, which are selective to the putative ubiquitin-conjugating enzyme E2N-like (UBE2NL). The 3D structure of the UBE2NL was evaluated using homology modeling techniques. The model was validated using standard in silico methods. The hydrophobic pocket of UBE2NL that aids in binding with its natural receptor ubiquitin-conjugating enzyme E2 variant (UBE2V) was identified through protein-protein docking study. The binding site region of the UBE2NL was identified using active site prediction tools. The binding site of UBE2NL which is responsible for cancer cell progression is considered for docking study. Virtual screening study with the small molecular structural database was carried out against the active site of UBE2NL. The ligand molecules that have shown affinity towards UBE2NL were considered for ADME prediction studies. The ligand molecules that obey the Lipinski’s rule of five and Jorgensen’s rule of three pharmacokinetic properties like human oral absorption etc. are prioritized. The resultant ligand molecules can be considered for the development of potent UBE2NL enzyme inhibitors for cancer therapy.  相似文献   

17.
InhA, the NADH-dependent enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis (Mtb) is the proposed main target of the first-line antituberculosis drug isoniazid (INH). INH activity is dependent on activation by the catalase peroxidase KatG, a Mtb enzyme whose mutations are linked to clinical resistance to INH. Other inhibitors of InhA that do not require any preliminary activation are known. The design of such direct potent inhibitors represents a promising approach to circumvent this resistance mechanism. An ensemble-docking process with four known InhA X-ray crystal structures and employing the Autodock Vina software was performed. Five InhA inhibitors whose bioactive conformations are known were sequentially docked in the substrate cavity of each protein. The efficiency of the docking was assessed and validated by comparing the calculated conformations to the crystallographic structures. For a same inhibitor, the docking results differed from one InhA conformation to another; however, docking poses that matched correctly or were very close to the expected bioactive conformations could be identified. The expected conformations were not systematically well ranked by the Autodock Vina scoring function. A post-docking optimization was carried out on all the docked conformations with the AMMP force field implemented on the VEGAZZ software, followed by a single point calculation of the interaction energy, using the MOPAC PM6-DH2 semi-empirical quantum chemistry method. The conformations were subsequently submitted to a PM6-DH2 optimization in partially flexible cavities. The resulting interaction energies combined with the multiple receptor conformations approach allowed us to retrieve the bioactive conformation of each ligand.  相似文献   

18.
The binding affinity of a series of benzhydrylpiperazine δ opioid receptor agonists were pooled and evaluated by using 3D-QSAR and homology modeling/molecular docking methods. Ligand-based CoMFA and CoMSIA 3D-QSAR analyses with 46 compounds were performed on benzhydrylpiperazine analogues by taking the most active compound BW373U86 as the template. The models were generated successfully with q2 value of 0.508 and r2 value of 0.964 for CoMFA, and q2 value of 0.530 and r2 value of 0.927 for CoMSIA. The predictive capabilities of the two models were validated on the test set with R2pred value of 0.720 and 0.814, respectively. The CoMSIA model appeared to work better in this case. A homology model of active form of δ opioid receptor was established by Swiss-Model using a reported crystal structure of active μ opioid receptor as a template, and was further optimized using nanosecond scale molecular dynamics simulation. The most active compound BW373U86 was docked to the active site of δ opioid receptor and the lowest energy binding pose was then used to identify binding residues such as s Gln105, Lys108, Leu125, Asp128, Tyr129, Leu200, Met132, Met199, Lys214, Trp274, Ile277, Ile304 and Tyr308. The docking and 3D-QSAR results showed that hydrogen bond and hydrophobic interactions played major roles in ligand-receptor interactions. Our results highlight that an approach combining structure-based homology modeling/molecular docking and ligand-based 3D-QSAR methods could be useful in designing of new opioid receptor agonists.  相似文献   

19.
Rv0098 is part of an operon, Rv0096-Rv0101, from Mycobacterium tuberculosis (Mtb) that is essential for Mtb's survival in mouse macrophages. This operon also contains an acyl carrier protein and one of the only two nonribosomal peptide synthases in Mtb. Rv0098 is annotated in the genome as a hypothetical protein and was proposed to be an acyl-coenzyme A (CoA) dehydratase. The structure of Rv0098, together with subsequent biochemical analysis, indicated that Rv0098 is a long-chain fatty acyl-CoA thioesterase (FcoT). However, FcoT lacks a general base or a nucleophile that is always found in the catalytic site of type II and type I thioesterases, respectively. The active site of Mtb FcoT reveals the structural basis for its substrate specificity for long-chain acyl-CoA and allows us to propose a catalytic mechanism for the enzyme. The characterization of Mtb FcoT provides a putative function of this operon that is crucial for Mtb pathogenicity.  相似文献   

20.
Mycobacterium tuberculosis (Mtb) is the causative organism of tuberculosis. Extensively drug resistant strains and latency have posed formidable challenges in the treatment of tuberculosis. The current study addresses an alpha/beta hydrolase fold bearing enzyme, epoxide hydrolase Rv1938 from Mtb. Epoxide hydrolases are involved in detoxification processes, catabolism and regulation of signaling molecules. Using GROMACS, a 100 ns Molecular Dynamics (MD) simulation was performed for Rv1938. Cavities were identified within the protein at various time frames of the simulation and their volumes were computed. During MD simulation, in addition to the substrate binding cavity, opening of two new cavities located behind the active site was observed. These cavities may be similar to the backdoor proposed for acetylcholinesterase. Structural superimposition of epoxide hydrolase from Mtb with the epoxide hydrolase of Agrobacterium radiobacter1 AD1 (Ephy) indicates that cavity1 in Mtb lies at an identical position to that of the water tunnel in Ephy. Further, docking of the substrate and an inhibitor with protein structures obtained from MD simulation at various time frames was also performed. The potential role of these cavities is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号