首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of fac-[Mn(CNR)(CO)3{(PMe2)2CH2}]ClO4 (1a R = Ph, R = tBu) with KOH produced the cleavage of one of the P-C bonds of the coordinated dmpm ligand, resulting in the formation of phosphine-phosphinite complexes fac-[Mn(PMe2O)(CNR)(CO)3(PMe3)] (2a,b). Alkoxides such as NaOMe and NaOEt promoted similar processes in 1a,b, yielding fac-[Mn(CNR)(CO)3(PMe3)(PMe2OR')]ClO4 (3a R = tBu, R' = Me; 3b R = Ph, R' = Me; 4a R = tBu, R' = Et; 4b R = Ph, R' = Et) derivatives. The phosphinite ligand in 2a, b can be sequentially protonated by addition of 0.5 and 1 equivalent of HBF4 leading to fac-[{Mn(CNR)(CO)3(PMe3)(PMe2O)}2H]BF4 (6a,b) and fac-[Mn(CNR)(CO)3(PMe3)(PMe2OH)]BF4 (5a,b), respectively.  相似文献   

2.
The reaction of fac-[ReBr(CO)3(NCMe)2] (1) with either pyrazole (Hpz) or 3,5-dimethylpyrazole (Hdmpz) in a 1:2 Re/pyrazole ratio affords the known complexes fac-[ReBr(CO)3(Hpz)2] (2) and [ReBr(CO)3(Hdmpz)2] (3). Using a 1:1 ratio, MeCN as solvent, and longer reaction times led to a mixture in which the major components are the pyrazolylamidino complexes fac-[ReBr(CO)3(HN=C(CH3)pz-kappa2N,N)] (4) and fac-[ReBr(CO)3(HN=C(CH3)dmpz-kappa2N,N)] (5). The complexes fac-[ReBr(CO)3(Hpz)(NCMe)] (6) and fac-[ReBr(CO)3(Hdmpz)(NCMe)] (7) (along with 2 and 3) were found to be minor components of these reactions. Analogous reactions of fac-[Re(OClO3)(CO)3(NCMe)2] yielded fac-[Re(NCCH3)(CO)3(HN=C(CH3)pz-kappa2N,N)]ClO4 (8), fac-[Re(NCCH3)(CO)3(HN=C(CH3)dmpz-kappa2N,N)]ClO4 (9), fac-[Re(Hpz)(CO)3(HN=C(CH3)pz-kappa2N,N)]ClO4 (10), and fac-[Re(Hdmpz)(CO)3(HN=C(CH3)dmpz-kappa2N,N)]ClO4 (11). The X-ray structure of 11 showed the perchlorate anion to be hydrogen-bonded by the N-H groups of the pyrazole and pyrazolylamidino ligands. The behavior of the compound fac-[Re(Hdmpz)(CO)3(HN=C(CH3)dmpz-kappa2N,N)]BAr'4 (13) (synthesized by reaction of [ReBr(CO)3(Hdmpz)2] (3) with (i) AgOTf and (ii) NaBAr'(4)/MeCN) as an anion receptor has been studied in CD3CN solution. In addition, the structure of the supramolecular adduct fac-[Re(CO)3(Hdmpz)(HN=C(CH3)dmpz-kappa2N,N)].Cl (14), featuring chloride binding by the two N-H groups, was determined by X-ray diffraction.  相似文献   

3.
The transition metal acyl compounds [Co(L)(CO)3(COMe)] (L = PMe3, PPhMe2, P(4-Me-C6H4)3, PPh3 and P(4-F-C6H4)3), [Mn(CO)5(COMe)] and [Mo(PPh3)(eta(5)-C5H5)(CO)2(COMe)] react with B(C6F5)3 to form the adducts [Co(L)(CO)3(C{OB(C6F5)3}Me)] (L = PMe3, 1, PPhMe2, 2, P(4-Me-C6H4)3, 3, PPh3, 4, P(4-F-C6H4)3), 5, [Mn(CO)5(C{OB(C6F5)3}Me)] 6 and [Mo(eta(5)-C5H5)(PPh3)(CO)2(C{OB(C6F5)3}Me)], 7. Addition of B(C6F5)3 to a cooled solution of [Mo(eta(5)-C5H5)(CO)3(Me)], under an atmosphere of CO gave [Mo(eta(5)-C5H5)(CO)3(C{OB(C6F5)3}Me)] 8. In the presence of adventitious water, the compound [Co{HOB(C6F5)3}2{OP(4-F-C6H4)3}2] 9, was formed from [Co(P(4-F-C6H4)3)(CO)3(C{OB(C6F5)3}Me)]. The compounds 4 and 9 have been structurally characterised. The use of B(C6F5)3 as a catalyst for the CO-induced migratory-insertion reaction in the transition metal alkyl compounds [Co(PPh3)(CO)3(Me)], [Mn(CO)5(Me)], [Mo(eta(5)-C5H5)(CO)3(Me)] and [Fe(eta(5)-C5H5)(CO)2(Me)] has been investigated.  相似文献   

4.
[W(H)(NO)(PMe3)4] (1) was prepared by the reaction of [W(Cl)(NO)(PMe3)4] with NaBH4 in the presence of PMe3. The insertion of acetophenone, benzophenone and acetone into the W-H bond of 1 afforded the corresponding alkoxide complexes [W(NO)(PMe3)4(OCHR1R2)](R1 = R2 = Me (2); R1 = Me, R2 = Ph (3); R1 = R2 = Ph (4)), which were however thermally unstable. Insertion of CO2 into the W-H bond of yields the formato-O complex trans-W(NO)(OCHO)(PMe3)4 (5). Reaction of trans-W(NO)(H)(PMe3)4 with CO led to the formation of mer-W(CO)(NO)(H)(PMe3)3 (6) and not the formyl complex W(NO)(CHO)(PMe3)4. Insertion of Fe(CO)(5), Re2(CO)10 and Mn2(CO)10 into trans-W(NO)(H)(PMe3)4 resulted in the formation of trans-W(NO)(PMe3)4(mu-OCH)Fe(CO)4 (7), trans-W(NO)(PMe3)4(mu-OCH)Re2(CO)9 (8) and trans-W(NO)(PMe3)4(mu-OCH)Mn2(CO)9 (9). For Re2(CO)10, an equilibrium was established and the thermodynamic data of the equilibrium reaction have been determined by a variable-temperature NMR experiments (K(298K)= 104 L mol(-1), DeltaH=-37 kJ mol(-1), DeltaS =-86 J K(-1) mol(-1)). Both compounds 7 and 8 were separated in analytically pure form. Complex 9 decomposed slowly into some yet unidentified compounds at room temperature. Insertion of imines into the W-H bond of 1 was also additionally studied. For the reactions of the imines PhCH=NPh, Ph(Me)C=NPh, C6H5CH=NCH2C6H5, and (C6H5)2C=NH with only decomposition products were observed. However, the insertion of C10H7N=CHC6H5 into the W-H bond of led to loss of one PMe3 ligand and at the same time a strong agostic interaction (C17-H...W), which was followed by an oxidative addition of the C-H bond to the tungsten center giving the complex [W(NO)(H)(PMe3)3(C10H6NCH2Ph)] (10). The structures of compounds 1, 4, 7, 8 and 10 were studied by single-crystal X-ray diffraction.  相似文献   

5.
The ruthenium(II)-triphos acetato complex [RuCl(OAc)(kappa3-triphos)] (triphos = (PPh2CH2)3CMe) has been found to be an active catalyst precursor for the hydrogenation of 1-alkenes under relatively mild conditions (5-50 bar H2, 50 degrees C). In contrast to related triphenylphosphine complexes, [RuCl(OAc)(kappa3-triphos)] is much less air sensitive and high catalytic activities were achieved when catalyst samples were prepared without exclusion of air or moisture. Substitution of the acetato ligand can be effected by treatment of acid, affording [Ru2(mu-Cl)3(kappa3-triphos)2]Cl and [RuCl(kappa3-triphos)]2(BF4)2 with aqueous HCl and [Et2OH]BF4, respectively, or by heating with dmpm in the presence of [NH4]PF6, resulting in formation of [RuCl(kappa2-dmpm)(kappa3-triphos)]PF6 (dmpm = PMe2CH2PMe2). A hydride complex, [RuHCl(kappa3-triphos)], formed by acetato-mediated heterolytic cleavage of dihydrogen is proposed as the active catalytic species. An inner-sphere, monohydride mechanism is suggested for the catalytic cycle, with chloro and triphos ligands playing a spectator role. These mechanistic proposals are consistent with reactivity studies carried out on [RuCl(OAc)(kappa3-triphos)] and [RuH(OAc)(kappa3-triphos)] and supported by a computational analysis. The solid-state structures of [RuCl(OAc)(kappa3-triphos)], [RuCl(kappa3-triphos)]2(BF4)2, and [RuCl(kappa2-dmpm)(kappa3-triphos)]PF6 have been established by X-ray diffraction.  相似文献   

6.
This study probes the impact of electronic asymmetry of diiron(I) dithiolato carbonyls. Treatment of Fe2(S2C(n)H(2n))(CO)(6-x)(PMe3)x compounds (n = 2, 3; x = 1, 2, 3) with NOBF4 gave the derivatives [Fe2(S2C(n)H(2n))(CO)(5-x)(PMe3)x(NO)]BF4, which are electronically unsymmetrical because of the presence of a single NO(+) ligand. Whereas the monophosphine derivative is largely undistorted, the bis(PMe3) derivatives are distorted such that the CO ligand on the Fe(CO)(PMe3)(NO)(+) subunit is semibridging. Two isomers of [Fe2(S2C3H6)(CO)3(PMe3)2(NO)]BF4 were characterized spectroscopically and crystallographically. Each isomer features electron-rich Fe(CO)2PMe3 and electrophilic Fe(CO)(PMe3)(NO)(+) subunits. These species are in equilibrium with an unobserved isomer that reversibly binds CO (DeltaH = -35 kJ/mol, DeltaS = -139 J mol(-1) K(-1)) to give the symmetrical adduct [Fe2(S2C3H6)(mu-NO)(CO)4(PMe3)2]BF4. In contrast to Fe2(S2C3H6)(CO)4(PMe3)2, the bis(PMe3) nitrosyl complexes readily undergo CO substitution to give the (PMe3)3 derivatives. The nitrosyl complexes reduce at potentials that are approximately 1 V milder than their carbonyl counterparts. Results of density functional theory calculations, specifically natural bond orbital analysis, reinforce the electronic resemblance of the nitrosyl complexes to the corresponding mixed-valence diiron complexes. Unlike other diiron dithiolato carbonyls, these species undergo reversible reductions at mild potentials. The results show that the novel structural and chemical features associated with mixed-valence diiron dithiolates (the so-called H(ox) models) can be replicated in the absence of mixed-valency by the introduction of electronic asymmetry.  相似文献   

7.
The two-step one-pot oxidative decarbonylation of [Fe2(S2C2H4)(CO)4(PMe3)2] (1) with [FeCp2]PF6, followed by addition of phosphane ligands, led to a series of diferrous dithiolato carbonyls 2-6, containing three or four phosphane ligands. In situ measurements indicate efficient formation of 1(2+) as the initial intermediate of the oxidation of 1, even when a deficiency of the oxidant was employed. Subsequent addition of PR3 gave rise to [Fe2(S2C2H4)(mu-CO)(CO)3(PMe3)3]2+ (2) and [Fe2(S2C2H4)(mu-CO)(CO)2(PMe3)2(PR3)2]2+ (R = Me 3, OMe 4) as principal products. One terminal CO ligand in these complexes was readily substituted by MeCN, and [Fe2(S2C2H4)(mu-CO)(CO)2(PMe3)3(MeCN)]2+ (5) and [Fe2(S2C2H4)(mu-CO)(CO)(PMe3)4(MeCN)]2+ (6) were fully characterized. Relevant to the H(red) state of the active site of Fe-only hydrogenases, the unsymmetrical derivatives 5 and 6 feature a semibridging CO ligand trans to a labile coordination site.  相似文献   

8.
Oxidative addition of diorganyl diselenides to the coordinatively unsaturated, low-valent transition-metal-carbonyl fragment [Mn(CO)(5)](-) produced cis-[Mn(CO)(4)(SeR)(2)](-). The complex cis-[PPN][Mn(CO)(4)(SePh)(2)] crystallized in triclinic space group P&onemacr; with a = 10.892(8) ?, b = 10.992(7) ?, c = 27.021(4) ?, alpha = 101.93(4) degrees, beta = 89.79(5) degrees, gamma = 116.94(5) degrees, V = 2807(3) ?(3), and Z = 2; final R = 0.085 and R(w) = 0.094. Thermolytic transformation of cis-[Mn(CO)(4)(SeMe)(2)](-) to [(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)](-) was accomplished in high yield in THF at room temperature. Crystal data for [Na-18-crown-6-ether][(CO)(3)Mn(&mgr;-SeMe)(3)Mn(CO)(3)]: trigonal space group R&thremacr;, a = 13.533(3) ?, c = 32.292(8) ?, V = 5122(2) ?(3), Z = 6, R = 0.042, R(w) = 0.041. Oxidation of Co(2+) to Co(3+) by diphenyl diselenide in the presence of chelating metallo ligands cis-[Mn(CO)(4)(SePh)(2)](-) and cis-[Mn(CO)(4)(TePh)(2)](-), followed by a bezenselenolate ligand rearranging to bridge two metals and a labile carbonyl shift from Mn to Co, led directly to [(CO)(4)Mn(&mgr;-TePh)(2)Co(CO)(&mgr;-SePh)(3)Mn(CO)(3)]. Crystal data: triclinic space group P&onemacr;, a = 11.712(3) ?, b = 12.197(3) ?, c = 15.754(3) ?, alpha = 83.56(2) degrees, beta = 76.13(2) degrees, gamma = 72.69(2) degrees, V = 2083.8(7) ?(3), Z = 2, R = 0.040, R(w) = 0.040. Addition of fac-[Fe(CO)(3)(SePh)(3)](-) to fac-[Mn(CO)(3)(CH(3)CN)(3)](+) resulted in formation of (CO)(3)Mn(&mgr;-SePh)(3)Fe(CO)(3). This neutral heterometallic complex crystallized in monoclinic space group P2(1)/n with a = 8.707(2) ?, b = 17.413(4) ?, c = 17.541(4) ?, beta = 99.72(2) degrees, V = 2621(1) ?(3), and Z = 4; final R = 0.033 and R(w) = 0.030.  相似文献   

9.
Reactions of the bis(hydrosulfido) complexes [Cp*Rh(SH)(2)(PMe(3))] (1a; Cp* = eta(5)-C(5)Me(5)) with [CpTiCl(3)] (Cp = eta(5)-C(5)H(5)) and [TiCl(4)(thf)(2)] in the presence of triethylamine led to the formation of the sulfido-bridged titanium-rhodium complexes [Cp*Rh(PMe(3))(micro(2)-S)(2)TiClCp] (2a) and [Cp*Rh(PMe(3))(micro2-S)(2)TiCl(2)] (3a), respectively. Complex 3a and its iridium analogue 3b were further converted into the bis(acetylacetonato) complexes [Cp*M(PMe(3))(micro(2)-S)(2)Ti(acac)(2)] (4a, M = Rh; 4b, M = Ir) upon treatment with acetylacetone. The hydrosulfido complexes 1a and [Cp*Ir(SH)(2)(PMe(3))] (1b) also reacted with [VCl(3)(thf)(3)] and [Mo(CO)(4)(nbd)] (nbd = 2,5-norbornadiene) to afford the cationic sulfido-bridged VM2 complexes [(Cp*M(PMe(3))(micro2-S)(2))2V](+) (5a(+), M = Rh; 5b(+), M = Ir) and the hydrosulfido-bridged MoM complexes [Cp*M(PMe(3))(micro2-SH)(2)Mo(CO)(4)] (6a, M = Rh; 6b, M = Ir), respectively.  相似文献   

10.
The non-heteroatom-substituted manganese alkynyl carbene complexes (eta5-MeC5H4)(CO)2Mn=C(R)C[triple bond]CR'(3; 3a: R = R'= Ph, 3b: R = Ph, R'= Tol, 3c: R = Tol, R'= Ph) have been synthesised in high yields upon treatment of the corresponding carbyne complexes [eta5-MeC5H4)(CO)2Mn[triple bond]CR][BPh4]([2][BPh4]) with the appropriate alkynyllithium reagents LiC[triple bond]CR' (R'= Ph, Tol). The use of tetraphenylborate as counter anion associated with the cationic carbyne complexes has been decisive. The X-ray structures of (eta5-MeC5H4)(CO)2Mn=C(Tol)C[triple bond]CPh (3c), and its precursor [(eta5-MeC5H4)(CO)2Mn=CTol][BPh4]([2b](BPh4]) are reported. The reactivity of complexes toward phosphines has been investigated. In the presence of PPh3, complexes act as a Michael acceptor to afford the zwitterionic sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh3)R' (5) resulting from nucleophilic attack by the phosphine on the remote alkynyl carbon atom. Complexes 5 exhibit a dynamic process in solution, which has been rationalized in terms of a fast [NMR time-scale] rotation of the allene substituents around the allene axis; metrical features within the X-ray structure of (eta5-MeC5H4)(CO)2MnC(Ph)=C=C(PPh3)Tol (5b) support the proposal. In the presence of PMe3, complexes undergo a nucleophilic attack on the carbene carbon atom to give zwitterionic sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PMe3)C[triple bond]CR' (6). Complexes 6 readily isomerise in solution to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PMe3)R (7) through a 1,3 shift of the [(eta5-MeC5H4)(CO)2Mn] fragment. The nucleophilic attack of PPh2Me on 3 is not selective and leads to a mixture of the sigma-propargylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)(PPh(2)Me)C[triple bond]CR' (9) and the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R)=C=C(PPh(2)Me)R' (10). Like complexes 6, complexes 9 readily isomerize to give the sigma-allenylphosphonium complexes (eta5-MeC5H4)(CO)2MnC(R')=C=C(PPh2Me)R'). Upon gentle heating, complexes 7, and mixtures of 10 and 10' cyclise to give the sigma-dihydrophospholium complexes (eta5-MeC5H4)(CO)2MnC=C(R')PMe2CH2CH(R)(8), and mixtures of complexes (eta5-MeC5H4)(CO)2MnC=C(Ph)PPh2CH2CH(Tol)(11) and (eta5-MeC5H4)(CO)2MnC=C(Tol)PMe2CH2CH(Ph)(11'), respectively. The reactions of complexes 3 with secondary phosphines HPR(1)(2)(R1= Ph, Cy) give a mixture of the eta2-allene complexes (eta5-MeC5H4)(CO)2Mn[eta2-{R(1)(2)PC(R)=C=C(R')H}](12), and the regioisomeric eta4-vinylketene complexes [eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R)=CHC(R')=C=O}](13) and (eta5-MeC5H4)(CO)Mn[eta4-{R(1)(2)PC(R')=CHC(R)=C=O}](13'). The solid-state structure of (eta5-MeC5H4)(CO)2Mn[eta2-{Ph2PC(Ph)=C=C(Tol)H}](12b) and (eta5-MeC5H4)(CO)Mn[eta4-{Cy2PC(Ph)=CHC(Ph)=C=O}](13d) are reported. Finally, a mechanism that may account for the formation of the species 12, 13, and 13' is proposed.  相似文献   

11.
The diphosphinoketenimine ligand in the neutral complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C=NR}] (1 a: R = Ph; 1 b: R = p-tolyl) undergoes nucleophilic attack by MeLi and nBuMgCl yielding, after hydrolysis, the diphosphinoenamine-containing complexes fac-[MnI(CO)(3){(PPh(2))(2)C=C(R')NHR}] (3 a,b: R' = Me; 4 a,b: R' = nBu). Complex 1 a reacts under the same conditions with H(2)C=C=CHMgBr to afford fac-[MnI(CO)(3){(PPh(2))(2)C=C(CH(2)CC[triple chemical bond]CH)NHR}] (5 a), which contains a terminal alkyne group on the alpha-carbon atom of the diphosphinoenamine ligand. The cationic complexes fac-[Mn(CO)(4){(PPh(2))(2)C=C=NR}](+) (6) react with H(2)C=C=CHMgBr to afford diphosphinomethanide derivatives bearing three different types of functional groups, depending upon the substituent on the nitrogen atom of the ketenimine: cumulene in fac-[Mn(CO)(4){(PPh(2))(2)C--C(CH=C=CH(2))=N-xylyl}] (7 d), internal alkyne in fac-[Mn(CO)(4){(PPh(2))(2)C--C(C[triple chemical bond]CCH(3))=NtBu}] (8), and quinoline in 9 (R = Ph), whose formation implies an unusual cyclization process. Protonation of 7 d, 8, and 9 with HBF(4) occurs at the nitrogen atom to give the cationic derivatives 10 d, 11, and 12, respectively, which contain the corresponding functionalized diphosphine ligands. Irradiation of 3 a,b and 4 a,b with Vis/UV light makes it possible to isolate the free ligands (PPh(2))(2)C=C(R')NHR (13 a,b and 14 a,b), completing the metal-assisted synthesis of these novel functionalized diphosphines. Irradiation of 12 with Vis/UV light generates free phosphinoquinoline ligand 15, which readily affords a complex 16 containing 15 as a P,N-chelating ligand when treated with [PdCl(2)(NCMe)(2)], thus demonstrating its coordination capability.  相似文献   

12.
The complex trans-[HFe(PNP)(dmpm)(CH(3)CN)]BPh(4), 3, (where PNP is Et(2)PCH(2)N(CH(3))CH(2)PEt(2) and dmpm is Me(2)PCH(2)PMe(2)) can be successively protonated in two steps using increasingly strong acids. Protonation with 1 equiv of p-cyanoanilinium tetrafluoroborate in acetone-d(6) at -80 degrees C results in ligand protonation and the formation of endo (4a) and exo (4b) isomers of trans-[HFe(PNHP)(dmpm)(CH(3)CN)](BPh(4))(2). The endo isomer undergoes rapid intramolecular proton/hydride exchange with an activation barrier of 12 kcal/mol. The exo isomer does not exchange. Studies of the reaction of 3 with a weaker acid (anisidinium tetrafluoroborate) in acetonitrile indicate that a rapid intermolecular proton exchange interconverts isomers 4a and 4b, and a pK(a) value of 12 was determined for these two isomers. Protonation of 3 with 2 equiv of triflic acid results in the protonation of both the PNP ligand and the metal hydride to form the dihydrogen complex [(H(2))Fe(PNHP)(dmpm)(CH(3)CN)](3+), 11. Studies of related complexes [HFe(PNP)(dmpm)(CO)](+) (12) and [HFe(depp)(dmpm)(CH(3)CN)](+) (10) (where depp is bis(diethylphosphino)propane) confirm the important roles of the pendant base and the ligand trans to the hydride ligand in the rapid intra- and intermolecular hydride/proton exchange reactions observed for 4. Features required for an effective proton relay and their potential relevance to the iron-only hydrogenase enzymes are discussed.  相似文献   

13.
The octahedral Ru(II) amine complexes [TpRu(L)(L')(NH(2)R)][OTf] (L = L' = PMe(3), P(OMe)(3) or L = CO and L' = PPh(3); R = H or (t)Bu) have been synthesized and characterized. Deprotonation of the amine complexes [TpRu(L)(L')(NH(3))][OTf] or [TpRu(PMe(3))(2)(NH(2)(t)Bu)][OTf] yields the Ru(II) amido complexes TpRu(L)(L')(NH(2)) and TpRu(PMe(3))(2)(NH(t)Bu). Reactions of the parent amido complexes or TpRu(PMe(3))(2)(NH(t)Bu) with phenylacetylene at room temperature result in immediate deprotonation to form ruthenium-amine/phenylacetylide ion pairs, and heating a benzene solution of the [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] ion pair results in the formation of the Ru(II) phenylacetylide complex TpRu(PMe(3))(2)(C[triple bond]CPh) in >90% yield. The observation that [TpRu(PMe(3))(2)(NH(2)(t)Bu)][PhC(2)] converts to the Ru(II) acetylide with good yield while heating the ion pairs [TpRu(L)(L')(NH(3))][PhC(2)] yields multiple products is attributed to reluctant dissociation of ammonia compared with the (t)butylamine ligand (i.e., different rates for acetylide/amine exchange). These results are consistent with ligand exchange reactions of Ru(II) amine complexes [TpRu(PMe(3))(2)(NH(2)R)][OTf] (R = H or (t)Bu) with acetonitrile. The previously reported phenyl amido complexes TpRuL(2)(NHPh) [L = PMe(3) or P(OMe)(3)] react with 10 equiv of phenylacetylene at elevated temperature to produce Ru(II) acetylide complexes TpRuL(2)(C[triple bond]CPh) in quantitative yields. Kinetic studies indicate that the reaction of TpRu(PMe(3))(2)(NHPh) with phenylacetylene occurs via a pathway that involves TpRu(PMe(3))(2)(OTf) or [TpRu(PMe(3))(2)(NH(2)Ph)][OTf] as catalyst. Reactions of 1,4-cyclohexadiene with the Ru(II) amido complexes TpRu(L)(L')(NH(2)) (L = L' = PMe(3) or L = CO and L' = PPh(3)) or TpRu(PMe(3))(2)(NH(t)Bu) at elevated temperatures result in the formation of benzene and Ru hydride complexes. TpRu(PMe(3))(2)(H), [Tp(PMe(3))(2)Ru[double bond]C[double bond]C(H)Ph][OTf], [Tp(PMe(3))(2)Ru=C(CH(2)Ph)[N(H)Ph]][OTf], and [TpRu(PMe(3))(3)][OTf] have been independently prepared and characterized. Results from solid-state X-ray diffraction studies of the complexes [TpRu(CO)(PPh(3))(NH(3))][OTf], [TpRu(PMe(3))(2)(NH(3))][OTf], and TpRu(CO)(PPh(3))(C[triple bond]CPh) are reported.  相似文献   

14.
Schutte M  Kemp G  Visser HG  Roodt A 《Inorganic chemistry》2011,50(24):12486-12498
A range of fac-[Re(CO)(3)(L,L'-Bid)(H(2)O)](n) (L,L'-Bid = neutral or monoanionic bidentate ligands with varied L,L' donor atoms, N,N', N,O, or O,O': 1,10-phenanthroline, 2,2'-bipydine, 2-picolinate, 2-quinolinate, 2,4-dipicolinate, 2,4-diquinolinate, tribromotropolonate, and hydroxyflavonate; n = 0, +1) has been synthesized and the aqua/methanol substitution has been investigated. The complexes were characterized by UV-vis, IR and NMR spectroscopy and X-ray crystallographic studies of the compounds fac-[Re(CO)(3)(Phen)(H(2)O)]NO(3)·0.5Phen, fac-[Re(CO)(3)(2,4-dQuinH)(H(2)O)]·H(2)O, fac-[Re(CO)(3)(2,4-dQuinH)Py]Py, and fac-[Re(CO)(3)(Flav)(CH(3)OH)]·CH(3)OH are reported. A four order-of-magnitude of activation for the methanol substitution is induced as manifested by the second order rate constants with (N,N'-Bid) < (N,O-Bid) < (O,O'-Bid). Forward and reverse rate and stability constants from slow and stopped-flow UV/vis measurements (k(1), M(-1) s(-1); k(-1), s(-1); K(1), M(-1)) for bromide anions as entering nucleophile are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) (50 ± 3) × 10(-3), (5.9 ± 0.3) × 10(-4), 84 ± 7; fac-[Re(CO)(3)(2,4-dPicoH)(MeOH)] (15.7 ± 0.2) × 10(-3), (6.3 ± 0.8) × 10(-4), 25 ± 3; fac-[Re(CO)(3)(TropBr(3))(MeOH)] (7.06 ± 0.04) × 10(-2), (4 ± 1) × 10(-3), 18 ± 4; fac-[Re(CO)(3)(Flav)(MeOH)] 7.2 ± 0.3, 3.17 ± 0.09, 2.5 ± 2. Activation parameters (ΔH(k1)(++), kJmol(-1); ΔS(k1)(), J K(-1) mol(-1)) from Eyring plots for entering nucleophiles as indicated are as follows: fac-[Re(CO)(3)(Phen)(MeOH)](+) iodide 70 ± 1, -35 ± 3; fac-[Re(CO)(3)(2,4-dPico)(MeOH)] bromide 80.8 ± 6, -8 ± 2; fac-[Re(CO)(3)(Flav)(MeOH)] bromide 52 ± 5, -52 ± 15. A dissociative interchange mechanism is proposed.  相似文献   

15.
Stepwise electrochemical reduction of the complex fac-[Mn(Br)(CO)(3)(tmbp)] (tmbp = 4,4',5,5'-tetramethyl-2,2'-biphosphinine) produces the dimer [Mn(CO)(3)(tmbp)](2) and the five-coordinate anion [Mn(CO)(3)(tmbp)](-). All three members of the redox series have been characterized by single-crystal X-ray diffraction. The crystallographic data provide valuable insight into the localization of the added electrons on the (carbonyl)manganese and tmbp centers. In particular, the formulation of the two-electron-reduced anion as [Mn(0)(CO)(3)(tmbp(-))](-) also agrees with the analysis of its IR nu(CO) wavenumbers and with the results of density functional theoretical (DFT) MO calculations on this compound. The strongly delocalized pi-bonding in the anion stabilizes its five-coordinate geometry and results in the appearance of several mixed Mn-to-tmbp charge-transfer/IL(tmbp) transitions in the near-UV-vis spectral region. A thorough voltammetric and UV-vis/IR spectroelectrochemical study of the reduction path provided evidence for a direct formation of [Mn(CO)(3)(tmbp)](-) via a two-electron ECE mechanism involving the [Mn(CO)(3)(tmbp)](*) radical transient. At ambient temperature [Mn(CO)(3)(tmbp)](-) reacts rapidly with nonreduced fac-[Mn(Br)(CO)(3)(tmbp)] to produce [Mn(CO)(3)(tmbp)](2). Comparison with the analogous 2,2'-bipyridine complexes has revealed striking similarity in the bonding properties and reactivity, despite the stronger pi-acceptor character of the tmbp ligand.  相似文献   

16.
The hybrid dibismuthines O(CH(2)CH(2)BiPh(2))(2) and MeN(CH(2)-2-C(6)H(4)BiPh(2))(2) react with [M(CO)(5)(thf)] (M = Cr or W) to form [{M(CO)(5)}(2){O(CH(2)CH(2)BiPh(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)BiPh(2))(2)}] containing bridging bidentate (Bi(2)) coordination. The unsymmetrical tertiary bismuthine complexes [M(CO)(5){BiPh(2)(o-C(6)H(4)OMe)}] are also described. Depending upon the molar ratio, the hybrid distibines O(CH(2)CH(2)SbMe(2))(2) and MeN(CH(2)-2-C(6)H(4)SbMe(2))(2) react with [M(CO)(5)(thf)] to give the pentacarbonyl complexes [{M(CO)(5)}(2){O(CH(2)CH(2)SbMe(2))(2)}] and [{Cr(CO)(5)}(2){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] or tetracarbonyls cis-[M(CO)(4){O(CH(2)CH(2)SbMe(2))(2)}] and cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}]. The latter can also be obtained from [Cr(CO)(4)(nbd)] or [W(CO)(4)(pip)(2)], and contain chelating bidentates (Sb(2)-coordinated) as determined crystallographically. S(CH(2)-2-C(6)H(4)SbMe(2))(2) coordinates as a tridentate (SSb(2)) in fac-[M(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Cr or Mo) and fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)]. Fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] contains NSb(2)-coordinated ligand in the solid state, but in solution a second species, Sb(2)-coordinated and with a κ(1)-CF(3)SO(3) replacing the coordinated amine is also evident. X-ray crystal structures were also determined for fac-[Cr(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}], fac-[Mn(CO)(3){S(CH(2)-2-C(6)H(4)SbMe(2))(2)}][CF(3)SO(3)] and fac-[Mn(CO)(3){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] [CF(3)SO(3)]. Hypervalent N···Sb interactions are present in cis-[M(CO)(4){MeN(CH(2)-2-C(6)H(4)SbMe(2))(2)}] (M = Mo or W), but absent for M = Cr.  相似文献   

17.
The one-electron oxidations of a series of diiron(I) dithiolato carbonyls were examined to evaluate the factors that affect the oxidation state assignments, structures, and reactivity of these low-molecular weight models for the H ox state of the [FeFe]-hydrogenases. The propanedithiolates Fe 2(S 2C 3H 6)(CO) 3(L)(dppv) (L = CO, PMe 3, P i-Pr 3) oxidize at potentials approximately 180 mV milder than the related ethanedithiolates ( Angew. Chem., Int. Ed. 2007, 46, 6152). The steric clash between the central methylene of the propanedithiolate and the phosphine favors the rotated structure, which forms upon oxidation. Electron Paramagnetic Resonance (EPR) spectra for the mixed-valence cations indicate that the unpaired electron is localized on the Fe(CO)(dppv) center in both [Fe 2(S 2C 3H 6)(CO) 4(dppv)]BF 4 and [Fe 2(S 2C 3H 6)(CO) 3(PMe 3)(dppv)]BF 4, as seen previously for the ethanedithiolate [Fe 2(S 2C 2H 4)(CO) 3(PMe 3)(dppv)]BF 4. For [Fe 2(S 2C n H 2 n )(CO) 3(P i-Pr 3)(dppv)]BF 4; however, the spin is localized on the Fe(CO) 2(P i-Pr 3) center, although the Fe(CO)(dppv) site is rotated in the crystalline state. IR and EPR spectra, as well as redox potentials and density-functional theory (DFT) calculations, suggest that the Fe(CO) 2(P i-Pr 3) site is rotated in solution, driven by steric factors. Analysis of the DFT-computed partial atomic charges for the mixed-valence species shows that the Fe atom featuring a vacant apical coordination position is an electrophilic Fe(I) center. One-electron oxidation of [Fe 2(S 2C 2H 4)(CN)(CO) 3(dppv)] (-) resulted in 2e oxidation of 0.5 equiv to give the mu-cyano derivative [Fe (I) 2(S 2C 2H 4)(CO) 3(dppv)](mu-CN)[Fe (II) 2(S 2C 2H 4)(mu-CO)(CO) 2(CN)(dppv)], which was characterized spectroscopically.  相似文献   

18.
The lowest allowed electronic transition of fac-[Re(Cl)(CO)(3)(bopy)(2)] (bopy = 4-benzoylpyridine) has a Re --> bopy MLCT character, as revealed by UV-vis and stationary resonance Raman spectroscopy. Accordingly, the lowest-lying, long-lived, excited state is Re --> bopy (3)MLCT. Electronic depopulation of the Re(CO)(3) unit and population of a bopy pi orbital upon excitation are evident by the upward shift of nu(CO) vibrations and a downward shift of the ketone nu(C=O) vibration, respectively, seen in picosecond time-resolved IR spectra. Moreover, reduction of a single bopy ligand in the (3)MLCT excited state is indicated by time-resolved visible and resonance Raman (TR(3)) spectra that show features typical of bopy(*)(-). In contrast, the lowest allowed electronic transition and lowest-lying excited state of a new complex fac-[Re(bopy)(CO)(3)(bpy)](+) (bpy = 2,2'-bipyridine) have been identified as Re --> bpy MLCT with no involvement of the bopy ligand, despite the fact that the first reduction of this complex is bopy-localized, as was proven spectroelectrochemically. This is a rare case in which the localizations of the lowest MLCT excitation and the first reduction are different. (3)MLCT excited states of both fac-[Re(Cl)(CO)(3)(bopy)(2)] and fac-[Re(bopy)(CO)(3)(bpy)](+) are initially formed vibrationally hot. Their relaxation is manifested by picosecond dynamic shifts of nu(C(triple bond)O) IR bands. The X-ray structure of fac-[Re(bopy)(CO)(3)(bpy)]PF(6).CH(3)CN has been determined.  相似文献   

19.
Reactions of [M(SR)(3)(PMe(2)Ph)(2)] (M = Ru, Os; R = C(6)F(4)H-4, C(6)F(5)) with CS(2) in acetone afford [Ru(S(2)CSR)(2)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 1; C(6)F(5), 3) and trans-thiolates [Ru(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 2; C(6)F(5), 4) or the isomers trans-thiolates [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 5; C(6)F(5), 7) and trans-thiolate-phosphine [Os(SR)(2)(S(2)CSR)(PMe(2)Ph)(2)] (R = C(6)F(4)H-4, 6; C(6)F(5), 8) through processes involving CS(2) insertion into M-SR bonds. The ruthenium(III) complexes [Ru(SR)(3)(PMe(2)Ph)(2)] react with CS(2) to give the diamagnetic thiolate-thioxanthato ruthenium(II) and the paramagnetic ruthenium(III) complexes while osmium(III) complexes [Os(SR)(3)(PMe(2)Ph)(2)] react to give the paramagnetic thiolate-thioxanthato osmium(III) isomers. The single-crystal X-ray diffraction studies of 1, 4, 5, and 8 show distorted octahedral structures. (31)P [(1)H] and (19)F NMR studies show that the solution structures of 1 and 3 are consistent with the solid-state structure of 1.  相似文献   

20.
The reactions of cis-[MoCl(η(3)-methallyl)(CO)(2)(NCMe)(2)] (methallyl = CH(2)C(CH(3))CH(2)) with Na(NCNCN) and pz*H (pzH, pyrazole, or dmpzH, 3,5-dimethylpyrazole) lead to cis-[Mo(η(3)-methallyl)(CO)(2)(pz*H)(μ-NCNCN-κ(2)N,N)](2) (pzH, 1a; dmpzH, 1b), where dicyanamide is coordinated as bridging ligand. Similar reactions with fac-[MnBr(CO)(3)(NCMe)(2)] lead to the pyrazolylamidino complexes fac-[Mn(pz*H)(CO)(3)(NH═C(pz*)NCN-κ(2)N,N)] (pzH, 2a; dmpzH, 2b), resulting from the coupling of pyrazol with one of the CN bonds of dicyanamide. The second CN bond of dicyanamide in 2a undergoes a second coupling with pyrazole after addition of 1 equiv of fac-[MnBr(CO)(3)(pzH)(2)], yielding the dinuclear doubly coupled complex [{fac-Mn(pzH)(CO)(3)}(2)(μ-NH═C(pz)NC(pz)=NH-κ(4)N,N,N,N)]Br (3). The crystal structure of 3 reveals the presence of two isomers, cis or trans, depending on whether the terminal pyrazoles are coordinated at the same or at different sides of the approximate plane defined by the bridging bis-amidine ligand. Only the cis isomer is detected in the crystal structure of the perchlorate salt of the same bimetallic cation (4), obtained by metathesis with AgClO(4). All the N-bound hydrogen atoms of the cations in 3 or 4 are involved in hydrogen bonds. Some of the C-N bonds of the pyrazolylamidino ligand have a character intermediate between single and double, and theoretical studies were carried out on 2a and 3 to confirm its electronic origin and discard packing effects. Calculations also show the essential role of bromide in the planarity of the tetradentate ligand in the bimetallic complex 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号