首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Reactions of a solution of AgNO3 in aqueous methanol with solutions of 1,4-diallylpiperazine (acidified with HNO3 to pH = 4) and 1-allyloxybenzotriazole in ethanol gave the crystalline silver(I) π-complexes [Ag2(C4H8N2(C3H5)2(H+)2)(H2O)2(NO3)2](NO3)2 (I) and [Ag(C6H4N3(OC3H5)(NO3))] (II). Their crystal structures were determined by X-ray diffraction. Crystals of complexes I and II are monoclinic, space group P21/c; for I: a = 7.053(3)Å, b = 9.389(3)Å, c = 15.488(4)Å, β = 91.60°, V = 1025.3(6)Å3, Z = 4; for II: a = 10.650(4)Å, b = 15.062(5)Å, c = 7.412(4)Å, β = 104.20(3)°, V = 1152.6(8)Å3, Z = 4. In both structures, the organic components act as bidentate ligands forming with AgNO3 34- and 14-membered topological rings, respectively. In complex I, the nearly tetrahedral environment of the Ag(I) atom is made up of the olefinic C=C bond, the O atoms of the nitrate anions, and the water molecule. 1-Allyloxybenzotriazole in structure II causes the deformation of the coordination polyhedron of Ag into a trigonal pyramid via inclusion of the ligand N atom in its coordination sphere. The topological units of the complexes form infinite polymer layers linked by anionic NO 3 ? bridges. In structure I, these layers are united through a system of hydrogen bonds into a three-dimensional framework.  相似文献   

2.
Two new coordination polymers with 3-pyridyl-4-yl-benzoic acid (3,4-HPybz), namely, [Zn(3,4-Pybz)2 · 2H2O] n (I) and [Ag(3,4-Pybz)(3,4-HPybz)] n (II), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. Compound I crystallizes in the triclinic system and has P1 space group. Complex I is an infinite 1D chain polymer and the infinite chains array uniformly in a 3D supramolecular network which posesses abundant O-H...O hydrogen-bonding interactions among the occupied and unoccupied carboxylate O atoms and the coordinated water molecules; compound II crystallizes in the triclinic system and has $P\bar 1$ space group, II is an infinite chain with the repeat sequence of Ag1(I)-Ag2(I)-Ag1(I), in which weak intermolecular interactions play a key role in forming the final 3D supramolecular architectures. The photoluminescences and lifetime of I and II in the solid state have been investigated.  相似文献   

3.
Two compounds, 7,13,16,21,24-hexaoxa-1,10-diazoniabicyclo[8.8.8]hexacosane bis(tribromide) and bis(bromodiiodide) — [H2(Crypt-222)]2+·2Br 3 ? (I) and [H2(Crypt-222)]2+·1.45(BrI2)?·0.4(Br2I)?·0.15 I 3 ? (II) — are prepared and characterized by single crystal XRD; the refinement of the second compound was more accurate. Isomorphous monoclinic structures (I, space group C2/c, Z = 4, a = 12.090, b = 15.833 Å, c = 15.732 Å, β = 95.83°; II, a = 12.548 Å, b = 16.417 Å, c = 15.748 Å, β = 94.53°) are solved by a direct method and refined in the anisotropic full-matrix approximation to R = 0.057 (I) and 0.044 (II) using all 2635 (I) and 2852 (II) measured independent reflections (automated CAD-4 diffractometer, λMoK α). In the structures of I and II one of the trihalide anions sits at the inversion center i(000), and the second trihalide anion and the dication [H2(Crypt-222)]2+ are situated at crystallographic axis 2. In the structure of II iodine is located in the center of trihalide anions, while the terminal atoms are disordered and are represented by a statistical combination of iodine and bromine atoms.  相似文献   

4.
In this paper, the results of a comparative study of a salt-like paramagnetic Mn(II) (d 5) complex [MnII(1,10-C12H8N2)3]2+[CoIII(B9C2H11)2] 2 (I) against [MnII(1,10-C12H8N2)2(NCS)2]0 (II) and [MnII(1,10-C12H8N2)3]2+[B9C2H12] 2 (III) are presented. Complexes I and III were synthesized by precipitating the Mn(II) cations with the corresponding anions in the stoichiometric ratio at a pH of ~ 4.5 and were studied by X-ray diffraction analysis on single crystals; by IR, Raman, and EPR spectroscopy; and using magnetochemical methods. The structures and crystal-chemical parameters of I at 190 and 293 K are identical. The crystals are mono-clinic; space group P21/n. Two crystallographic types of the [Co(B9C2H11)2] anion in structure I have different conformational combinations (cisoid and transoid) of the –C2– groups in each pair of the B9C2H2– 11 cluster ligands. The short contacts C–Hδ+···δ–H–B between different-type hydrogen atoms show themselves in the IR spectra. The apparent magnetic moments of the Mn(II) atom in I, II, and III at 293 K correspond to μ = 5.86 μB and do not depend on its ligand or anion environment. The temperature dependences μ = f(T) pass through a maximum at about 20 K, which suggests the occurrence of ferromagnetic exchange interactions in complexes I and III, which both contain cluster carborane derivatives with three-dimensional aromaticity.  相似文献   

5.
Two new coordination polymers, [Pb(IDPT)2(NO3)2] (I) and [Mn(IDPT)(SO4)(H2O)2] (II) (IDPT = imidazo[4,5-f][1,10]phenanthroline), were synthesized by hydrothermal method and characterized by elemental analysis and single-crystal X-ray diffraction technique. The results reveal that the complex I belongs to monoclinic crystal system, space group C2/c and complex II belongs to monoclinic crystal system, P21/c space group. The cell parameters are: a = 19.1970(13), b = 7.3875(5), c = 17.3825(12) Å, β = 100.47(10)°, V = 2424.0(3) Å3, Z = 4, F(000) = 1488 for I; a = 10.9135(6), b = 7.0230(4), c = 19.7034(10) Å, β = 99.32(10)°, V = 1490.25(14) Å3, Z = 4, F(000) = 828 for II. In the structure of complex I, the metal center Pb(II) is six-coordinated, displays an octahedral geometry. Each molecule is further connected with neighboring one via π-π interactions into 1D chain. In complex II, Mn(II) is six-coordinated to form a distorted octahedral geometry. Compound II displays 1D supramolecular chain formed through hydrogen bonds. Additionally, the fluorescent properties for the complexes were investigated. Complexes I and II exhibit strong photoluminescence with emission maximum at 583 and 529 nm at room temperature.  相似文献   

6.
The coordination polymers [Ag(C4H10N2)]CH3SO3 (I) and [Ag(C4H10N2)]PO2F2 (II) (C4H10N2 is piperazine (Ppz)) are synthesized, and their structures are determined. The crystals of I are monoclinic, space group P21/c, a = 6.280(1) Å, b = 11.781(1) Å, c = 12.112(1) Å, β = 97.21(1)°, V = 889.0(2) Å3, ρcalcd = 2.160 g/cm3, and Z = 4. The crystals of II are orthorhombic, space group Cmca, a = 13.039(1) Å, b = 10.450(1) Å, c = 12.837(1) Å, V = 1749.1(3) Å3, ρcalcd = 2.240 g/cm3, and Z = 8. Structure I contains cationic polymer chains [Ag(Ppz)] + . The silver atom bound to two nitrogen atoms of two Ppz ligands has an almost linear coordination mode (Ag-Naverage 2.197 Å, angle NAgN 161.2(1)°). The structure includes supramolecular layers due to weak interactions Ag…O(CH3SO3). Structure II is built of zigzag polymer chains [Ag(Ppz)]+ and tetrahedral cations PO2F 2 ? . The Ag+ ion has a linear coordination mode (Ag-N 2.220(3) Å, and the NAgN angle is 164.3(2)°). The tetrahedral anions PO2F 2 ? having weak contacts with the silver ions (Ag…O 2.630(3)Å) join the [Ag(Ppz)] + chains into wavy layers.  相似文献   

7.
Complexes RbL (I) and [Li2(C2H5OH)L2] (II) (L = C23H15O3) have been synthesized and their crystal structures have been studied. Both compounds have monoclinic crystals with space group P21/c and Z = 4; I: a = 11.632(2) Å, b = 15.154(3) Å, c = 11.457(2) Å, β = 104.34(3)°; II: a = 12.982(3)Å, b = 12.083(2) Å, c = 25.317(5) Å β = 100.11(3)°. In the structure of I, dimeric groups [Rb2O6] with a shared edge are linked by the ligands to give infinite layers perpendicular to the x axis and cavities that form oblong channels. In the structure of II, Li2O7 dimers are formed by vertex sharing. The coordination of one of the lithium atoms (Li(1)) is completed to tetrahedral by the oxygen atom of the ethanol molecule. The structure of II, like that of I, is layered.  相似文献   

8.
Two novel homobinuclear ytterbium(III) complexes, [Yb2(2AMB)6(H2O)4] · 2C2H6O (I) and Yb2(3AMB)6(H2O)4] · 3H2O (II) (2AMB = 2-aminobenzoic acid, 3AMB = 3-aminobenzoic acid) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis and X-ray crystallography (CIF files CCDC nos. 950103 (I), 921652 (II)). Complex I crystallizes in triclinic space group \(P\bar 1\) and complex II crystallizes in monoclinic space group P21/n. X-ray analysis shows that both complexes (I, II) have the dinuclear structure. The central Yb3+ ions in both complexes are eight-coordinated adopting distorted YbO8 dodecahedral geometry. Each Yb3+ ion is coordinated to two O atoms from bridging carboxylate, four O atoms from the chelating carboxylate ligands and two O atoms of water molecules. The crystal structure of I and II are stabilized by N-H…O, O-H…O, O-H…N, and C-H…O hydrogen bonds, C-H…π interactions and weak π-π stacking interactions.  相似文献   

9.
Treatment of ortho-carborane, n-butyl lithium, selenium and [(p-cymene)RuCl2]2 under argon leads to complexes (p-cymene)Ru(Se2C2B10H10) (I) and (p-cymene)2Ru22-Se2C2B10H10) (II). The further reaction of 16-electron complex I with RC≡CCO2Me affords addition complexes (p-cymene)Ru(Se2C2B10H10)(RC=C-CO2Me) (III) (R = H (IIIa); CO2Me (IIIb)). These complexes were characterized by elemental analysis, mass, and NMR spectroscopy. X-ray structural analyses were performed on II and IIIa.  相似文献   

10.
A novel proton transfer compound (H2Ppz)(HDipic)2 (I) obtained from 2-(piperazin-1-yl)ethanol (Ppz) and pyridine-2,6-dicarboxylic acid (H2Dipic) and its Cu(II) complex (H2Ppz)[Cu(Dipic)2] · 6H2O (II) have been prepared and characterized by elemental, spectral (1H and 13C NMR, IR and Uv-Vis) and thermal analyses. Magnetic measurement and single crystal X-ray diffraction methods have also been applied for compound II. The molecular structure of II consists of one 1-(2-hydroxyethyl)piperazine-1,4-diium cation, one bis(pyridinium-2,6-dicarboxylate)Cu(II) anion and six uncoordinated water molecules. In complex II, the copper ion coordinates to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral conformation. Furthermore, the synthesised compounds (I and II) were screened for their antimicrobial activities against Gram (?) (Escherichia coli and Pseudomonas aeruginosa) and Gram (+) (Staphylococcusaureus and Bacillus cereus). The results were reported, discussed and compared with the corresponding starting materials (H2Dipic and Ppz).  相似文献   

11.
Tetraphenylantimony(V) O,O′-di-sec-butyl dithiophosphate (I) and tetraphenylantimony(V) O,O′-dicyclohexyl dithiophosphate (II) [Sb(C6H5)4{S2P(OR)2}] (R = sec-C4H9 or cyclo-C6H11) were obtained. Their structures and spectroscopic properties were studied by X-ray diffraction analysis and 13C and 31P CP/MAS NMR spectroscopy. The dithiophosphate (Dtph) ligands in complexes I and II were found to be coordinated in S-monodentate and S,S′-bidentate fashions, respectively (MAS NMR data). According to X-ray diffraction data, the coordination polyhedron of antimony in molecular structure I is a trigonal bipyramid with unusual monodentate coordination of the Dtph group in the axial position.  相似文献   

12.
The complexes [Cu(L)(H2O)](ClO4)2 · 2H2O (I) and [Zn(L)Cl2] · C2H5OH (II), where L is the macrocyclic substituted aza-14-crown-4 ether molecule containing di(α-pyridyl)bispidine insert, were synthesized and studied by X-ray diffraction. The Cu atoms in complex I and the Zn atoms in complex II have equal coordination numbers of 5 and different highly distorted polyhedra (the CuN4O tetragonal pyramid and ZnN3Cl2 trigonal bipyramid). Ligand L in structure I performs the tetradentate tetrachelate (4N) structural function and in II, it performs the tridentate bis-chelate (3N) function. The key difference between the structures of complexes I and II is determined by different conformations of both the aza-macrocycles and bispidine substituents of ligand L.  相似文献   

13.
Three complexes with the formula [Co(Ip)(CuL)(H2O)2] · H2O (I), [Co(Ip)(NiL)(H2O)2] · H2O (II), [Co(CuL)2(Hbtc)(H2O)] (III), (H2Ip = m-isophthalic acid; H2L = 2,3-dioxo-5,6,14,15-dibenzo-1,4,8,12-tetraazacyclo-pentadeca-7,13-dien; H3Btc = 1,3,5-benzenetricarboxylic acid) were synthesized and structurally characterized by elemental analysis, IR and UV spectroscopy. Single-crystal X-ray analyses reveal that the complexes I and II contain neutral heterometallic binuclear CoM (for I and II, M = Cu, Ni, respectively) moieties, and complex III contains discrete neutral trinuclear CoCu2 moieties. The structures of IIII consist of two-dimensional supramolecular architecture formed by strong O-H…O intermolecular hydrogen bonds. Furthermore, the magnetic properties of complex I were investigated and discussed in detail.  相似文献   

14.
Two new complexes {[Zn(H2L)(Bpp)] · H2O} n (I) and {[Ag(H3L)(Bpp)] · 0.25H2O} n (II) (H4L = 5-(2,3-dicarboxy phenoxy) isophthalic acid, Bpp = 1,3-bis(4-pyridyl)propane) were prepared and characterized by single crystal X-ray diffraction (XRD) (CCDC nos. 1578523 (I), 1578529 (II)), element analysis and powder XRD. Compound I showed a one-dimensional chain structure, in which the zinc(II) ion is fourcoordinated with a tetrahedral geometry. Compound II is a 1D chain structure with the H3L– suspension arms. Complexes I and II are further extended into three-dimensional supramolecular framework via hydrogen bonds and π–π interactions. The solid state luminescent properties of compounds I and II have been investigated.  相似文献   

15.
Two complexes are synthesized: diaquabromo(18-crown-6)rubidium [RbBr(18-crown-6)(H2O)2] (I) and triaqua(18-crown-6)barium dibromide monohydrate [Ba(18-crown-6)(H2O)3]2+ 2Br? · H2O (II). The orthorhombic structure of compound I (space group Pnma, a = 10.124 Å, b = 15.205 Å, c = 12.544 Å, Z = 4) and the monoclinic structure of compound II (space group C 2/c, a = 17.910 Å, b = 10.315 Å, c = 14.879 Å, β = 123.23°, Z = 4) are determined by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.063 (I) and 0.042 (II) for all 2293 (I) and 3363 (II) independent measured reflections (CAD-4 automated diffractometer, λMoK α). The complex molecule [RbBr(18-crown-6)(H2O)2] in compound I and the randomly disordered cation [Ba(18-crown-6)(H2O)3]2+ in compound II are of the host-guest type: their Rb+ or Ba2+ cation (its coordination number is nine) is located in the cavity of the 18-crown-6 ligand and coordinated by all six O atoms. In structure I, the coordination polyhedron of Rb+ is a distorted hexagonal pyramid with a triple apex at the Br? ligand and two O atoms of the water molecules. In structure II, the Ba2+ polyhedron is a distorted hexagonal bipyramid with one apex at the O atom of the water molecule and the other split apex at two O atoms of water molecules.  相似文献   

16.
Two new oxovanadium(V) complexes, [VOL1(SHA)] (I) and [VOL2(BHA)] (II), were prepared by the reaction of [VO(Acac)2] (Acac = acetylacetonate) with N′-(2-hydroxybenzylidene)isonicotinohydrazide (H2L1) and salicylhydroxamic acid (HSHA) and 4-chloro-N′-(2-hydroxy-3-methoxybenzylidene)benzohydrazide (H2L2) and benzohydroxamic acid (HBHA), respectively, in methanol. Crystal and molecular structures of the complexes were determined by elemental analysis, infrared spectra and single crystal X-ray diffraction (CIF file CCDC nos. 978238 (I) and 978392 (II)). The V atoms are in octahedral coordination. Thermal stability and the inhibition of urease of the complexes were studied.  相似文献   

17.
Two new Zn(II) coordination complexes [ZnL2(SCN)2] (I) and [ZnL2Cl2] (II) have been pre-pared by self-assembly of corresponding metal salts with (E)-2-(3-(4-(1H-imidazole-1-yl)styryl)-5,5-dimethylcyclohexo-2-enylidene) malononitrile (L) and characterized by IR spectrum, elemental analysis and single-crystal X-ray diffraction. Complexes I and II are two-dimensional (2D) networks with different topology structures. The luminescence properties were investigated.  相似文献   

18.
The 2,11-dithia[3.3](3,5)pyrdinophane (L1) has been synthesized by a new method and characterized by 1H NMR, which is used to form coordination complexes C14H14N4O6S2Ni (I) by addition of Ni2+ cation and C14H14N3O3S2Ag (II) by addition of Ag+ cation. 2,11,20-Trithia[3.3.3](3,5)pyridinophane (L2) and 2,11,20,29-tetrathia[3.3.3.3](3,5)pyridinophane (L3) have also been synthesized as by-products. Single-crystal X-ray analysis reveals that the conformation of the L1 is syn(boat-chair), complexes I and II also adopt syn(boat-chair) (CIF files CCDC nos. 1400332 (I) and 700724 (II)). While in I, Ni(II) is coordinated with L1 with two nitrogen and four oxygen atoms, in II, Ag(I) is coordinated with L1 by two nitrogen and two sulfur atoms came from four ligands. In complexes I and II, the formation of three-dimensional structure depends on π???π stacking and hydrogen bonds.  相似文献   

19.
Transition metal complexes of 2-(1-(carboxymethyl)-2-methyl-1H-benzimidazol-3-ium-3-yl)acetate (HL), namely [Co(L)2(H2O)4] · 6H2O (I) and [Cu(L)2(H2O)2] · 4H2O (II), have been synthesized by a hydrothermal procedure and characterized by X-ray crystallography, CIF files CCDC nos. 1007524 (I), 1007525 (II). Both I and II are mononuclear molecules. In I, the Co2+ ion is in octahedral coordiantion environment and surrounded by four O atoms from water molecules and two carboxylate O atoms of two deprotonated ligand (L?) occupied six culmination. While in II, the Cu2+ ion is located in a square-planar geometry, bounded to two aqua O atoms and two carboxylate O atoms from L?.  相似文献   

20.
Methods for the synthesis of ammonium citratogermanate (NH4)[Ge(OH)(H2Cit)2] · H2O (I) and potassium citratogermanate (K4[Ge(HCit)2(H2Cit)] · 3H2O (II), where H4Cit is citric acid) in aqueous MeCN were developed. The individuality, chemical composition, and thermal stability of complexes I and II were proved by elemental analysis, thermogravimetry, and IR spectroscopy. According to X-ray diffraction data, the coordination numbers of the Ge atoms are 5 and 6 and their coordination polyhedra are a square pyramid and an octahedron in complexes I and II, respectively. In both complexes, the Ge atom coordinates the deprotonated OH group and the α-carboxyl group of the ligands H n Cit4?n to form five-membered chelate rings. Hydrogen bonds in I as well as potassium cations in II serve to unite these complexes into frameworks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号