首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of 1,3,5-phenylene-based rigid dendritic porphyrins were synthesized by Suzuki coupling between a porphyrin core and dendron units. The intramolecular energy transfer was studied by absorption and fluorescence spectroscopies. The encapsulation of the porphyrin core within the 1,3,5-phenylene dendron units was found to provide highly efficient energy transfer from the dendron units to the porphyrin core. The dendritic wedge structure affected the energy transfer efficiency. The 1,3,5-phenylene-based rigid dendron units act as highly efficient light-harvesting antennae. These dendritic porphyrins have also been examined as C(60) hosts and substrate-selective oxidation catalysts. The attachment of the second generation of 1,3,5-phenylene-based dendron units with the porphyrin core enabled a stable inclusion of C(60) in toluene. Furthermore, the size and shape of the nanospace in the rigid dendritic porphyrins were found to affect the selectivity of substrates in the catalytic olefin oxidations.  相似文献   

2.
Dendrimers with 2,5-diarylsilole at the core are readily synthesized by the Ni-catalyzed reaction of 1,1,2,2-tetramethyldisilane and 1,6-diynes having poly(benzyl ether)-dendron units. The dendrimers display, upon excitation of the silole ring, an emission at about 500 nm. The fluorescence quantum yield of the dendrimers increases with increasing the generation of the dendron units. In addition, upon excitation of dendron units in the periphery, the dendrimers also display an emission from the silole ring at the core through the energy transfer from the dendron units to the silole core within the dendrimers.  相似文献   

3.
The site isolation of two dyes capable of electronic interaction via Forster energy transfer has been studied with the two dyes coumarin 343 and pentathiophene encapsulated by dendrons containing both solubilizing and electroactive moieties. Photoluminescence studies of mixtures of the dendritic dyes show that at high dendron generation, significant site isolation is achieved with relative emission characteristics influenced by both the degree of site isolation and the emission quantum yield of the dyes. Electroluminescence studies carried out in organic light emitting diode devices confirm that color tuning may be achieved by mixing the two encapsulated dyes in a single layer. However, selective carrier trapping by one of the core component dyes can dramatically influence the effectiveness of other components in the device.  相似文献   

4.
A series of amphiphilic dendritic ligands with a phosphine core was synthesized by use of tris(4-hydroxyphenyl)phosphine oxide and poly(benzyl ether) dendron. The corresponding phosphine-palladium core dendrimers were applied as a catalyst to an aqueous-media Suzuki-Miyaura reaction. A positive dendritic effect on chemical yields of cross-coupling products was observed.  相似文献   

5.
The core molecule dependence of energy (exciton) migration in phenylacetylene nanostar dendrimers is investigated using the ab initio molecular orbital (MO)-configuration interaction based quantum master equation approach. We examine three kinds of core molecular species, i.e., benzene, anthracene, and pentacene, with different highest occupied MO-lowest unoccupied MO (HOMO-LUMO) gaps, which lead to different orbital interactions between the dendron parts and the core molecule. The nanostars bearing anthracene and pentacene cores are characterized by multistep exciton states with spatially well-segmented distributions: The exciton distributions of high-lying exciton states are spatially localized well in the periphery region, whereas those of low-lying exciton states are done in the core region. On the other hand, for the nanostar bearing benzene core, which also has multistep exciton states, the spatial exciton distributions of low-lying exciton states are delocalized over the dendron and the core regions. It is found that the former nanostars exhibit nearly complete exciton migration from the periphery to the core molecule in contrast to the latter one, in which significant exciton distribution remains in the dendron parts attached to the core after the exciton relaxation, although all these dendrimers exhibit fast exciton relaxation from the initially populated states. It is predicted from the analysis based on the MO correlation diagrams and the relative relaxation factor that the complete exciton migration to the core occurs not only when the HOMO-LUMO gap of the core molecule is nearly equal to that of the dendron parts attached to the core (anthracene case) but also when fairly smaller than that (pentacene case), whereas the complete migration is not achieved when the HOMO-LUMO gap of the core is larger than that of the dendron parts (benzene case). These results suggest that the fast and complete exciton migration of real dendrimers could be realized by adjusting the HOMO-LUMO gap of the core molecule to be smaller than that of dendron parts, although there exist more complicated relaxation processes as compared to simple dendritic aggregate models studied so far.  相似文献   

6.
The two-photon ionization (TPI) process (308 and 266 nm) of stilbene dendrimers having a stilbene core and benzyl ether type dendrons has been investigated in an acetonitrile and 1,2-dichloroethane mixture (3:1) in order to elucidate the dendrimer effects. The quantum yield of the formation of stilbene core radical cation during the 308-nm TPI was independent of the dendron generation of the dendrimers, whereas a generation dependence of the quantum yield of the radical cation was observed during the 266-nm TPI, where both the stilbene core and benzyl ether type dendron were ionized, suggesting that the subsequent hole transfer occurs from the dendron to the stilbene core, and that the dendron acts as a hole-harvesting antenna. The neutralization rate of the stilbene core radical cation with the chloride ion, generated from the dissociative electron capture by 1,2-dichloroethane, decreased with the increase in the dendrimer generation, suggesting that the dendron is an effective shield of the stilbene core radical cation against the chloride ion.  相似文献   

7.
A series of hybrid Au-nanoparticle-dendrimer materials: nanoparticle-cored thiophene dendrimers (NCTDs) were synthesized, characterized, and investigated for their energy-transfer properties. These hybrid nanoparticles were obtained by the simultaneous and in situ reduction of gold(III) chloride and self-assembly of the thiol-containing thiophene dendritic ligands. The dendron ligands were radially attached to the gold nanoparticles and were analyzed by TEM, UV/Vis, (1)H NMR, and FTIR spectroscopies. The solution fluorescence of the attached thiophene dendrons are quenched progressively. Both alkyl-chain length and dendron size have significant influence on the energy-transfer efficiency, as well as on core sizes and size distribution of the Au nanoparticles. In spite of the phenomenon's dependence on nanoparticle size, the energy transfer generally follows the 1/d(2) distance dependence. Single NCTD nanoparticles were also adsorbed on highly ordered pyrolytic graphite (HOPG) and uniform aggregates were observed on mica flat substrates.  相似文献   

8.
A difunctional dendron composed of three spiro-linked cyclosiloxane fragments was synthesized by a convergent way. This is of interest for the preparation of cylindrical and spherical dendritic molecules with the inorganic siloxane core and peripheral organic layer. The structures of the dendron synthesized and intermediates containing the Si-Cl, Si-H, Si-OH groups were confirmed by data from mass-spectrometry and X-ray diffraction.  相似文献   

9.
This article presents a synthesis method for nanoparticle-cored dendrimers (NCDs), which have dendritic architectures around a monolayer-protected gold nanoparticle. The synthesis method is based on a strategy in which the synthesis of monolayer-protected nanoparticles is followed by adding dendrons on functionalized nanoparticles by a single coupling reaction. NMR spectroscopy, IR spectroscopy, and thermogravimetric analysis (TGA) characterizations confirmed the successful coupling reaction between dendrons with different generations ([G1], [G2], and [G3]) and COOH-functionalized nanoparticles ( approximately Au201L71). The dendrimer wedge density also could be controlled by reacting nanoparticles having different loading of COOH groups ( approximately 60 and approximately 10% COOH of the 71 ligands per gold nanoparticle) with functionalized dendrons. Transmission electron microscope results showed that this synthesis strategy maintains the average size of the nanoparticle core during dendron coupling reactions. This control over the composition and core size makes the systematic study of NCDs with different generations possible. The chemical stability of NCDs was found to be affected by dendron generation around the nanoparticle core. The current-potential response of NCD films on microelectrode arrays exhibited better electrical conductivity for NCDs with lower dendron generation.  相似文献   

10.
《Comptes Rendus Chimie》2003,6(8-10):903-910
This mini-account describes our recent effort to exploit dendritic phthalocyanines, focusing on their photophysical properties and aggregation behavior in water and in microheterogeneous media. Two series of dendritic phthalocyanines have been prepared. The ones with terminal ester functionalities are non-aggregated in common organic solvents, exhibiting an intramolecular singlet-singlet energy transfer from the excited aryl-containing dendrons to the phthalocyanine core. The other series contain terminal carboxylate groups of which the aggregation tendency in water decreases as the size of the dendron increases. The lower-generation analogues are susceptible to surfactants, in particular the cationic n-hexadecyltrimethylammonium bromide (CTAB), and poly(ethylene oxide) (PEO), which are very effective to disrupt the molecular aggregation of phthalocyanines. The interactions have been monitored by absorption and fluorescence spectroscopy together with laser light scattering. The photophysical properties of the dendrimer/PEO complexes have also been studied by transient spectroscopy. To cite this article: D.K.P. Ng, C. R. Chimie 6 (2003).  相似文献   

11.
Several generations of phenylenevinylene dendrons, covalently attached to a C(60) core, have been developed as synthetic model systems with hierarchical, fine-tuned architectures. End-capping of these dendritic spacers with dibutylaniline or dodecyloxynaphthalene, as antennas/electron donors, yielded new donor-bridge-acceptor ensembles in which one, two, or four donors are allocated at the peripheral positions of the well-defined dendrons, while the electron accepting fullerene is placed at the focal point of the dendron. On the basis of our cyclic voltammetry experiments, which disclose a single anodic oxidation and several cathodic reduction processes, we rule out significant, long-range couplings between the fullerene core and the end-standing donors in their ground-state configuration. Photophysical investigations, on the other hand, show that upon photoexcitation an efficient and rapid transfer of singlet excited-state energy (6 x 10(10) to 2.5 x 10(12) s(-1)) controls the reactivity of the initially excited antenna portion. Spectroscopic and kinetic evidence suggests that yet a second contribution, that is, an intramolecular electron-transfer, exists, affording C(60)(.-) -dendron(.+) with quantum yields (Phi) as high as 0.76 and lifetimes (tau) that are on the order of hundreds of nanoseconds (220-725 ns). Variation of the energy gap modulates the interplay of these two pathways (i.e., competition or sequence between energy and electron transfer).  相似文献   

12.
A number of groups including trimethylsilyl, phenyl, triphenylene, and triphenylene-based dendron have been linked to the bay positions of a perylene diimide (PDI) core through an ethynyl bridge. The photophysical properties of the resulting bay-substituted PDI derivatives have been carefully studied in different solvents and as thin films. Without any capping group, the two ethynyl bay-substituted PDI derivates PAT and PRT both aggregate strongly even in dilute solutions but in different perylene-perylene π–π stacking modes; PRT aggregates through slipped (or longitudinal) stacking while PAT self-assembles by rotational (or cross) stacking. With capping groups, the perylene core stacking is completely blocked for PATS in both solution and solid film. For PRTS, the slipped stacking is observed only for its film sample, while for PTB, association only occurs after excitation (excimer formation). When triphenylene or triphenylene-based G1 dendron is attached to the acetylene bridge, the resulting donor–acceptor systems (PTG0 and PTG1) exhibit strong electronic coupling between the dendritic donors and the PDI acceptor, leading to significantly red-shifted absorption bands. The conjugated linkage also facilitates photoinduced electron transfer from the triphenylene or triphenylene dendron to the PDI core, effectively quenching fluorescence emissions of both the donor and the acceptor. The significantly red-shifted absorption bands and the efficient photoinduced electron transfer observed on PTG0 and PTG1 indicate that these new PDI derivatives may find applications in solar cells.  相似文献   

13.
We prepared a series of amphiphilic dendron coils (1-3) containing aliphatic polyether dendrons with octadecyl peripheries and a poly(ethylene oxide) (PEO) coil (DP = 44). The molecular design in this study is focused on the variation of dendron generation (from first to third) with a fixed linear coil, upon which the thermal and self-assembling behavior of the dendron coils was investigated in the bulk. All the dendron coils exhibit two crystalline phases designated as k1 (both crystalline octadecyl chains and PEO) and k2 states (crystalline octadecyl chains and molten PEO). Crystallinities for both octadecyl peripheries and the PEO decrease as generation increases. In particular, the dendron coil (3) containing third generation shows a drastic reduction of the PEO crystallinity, which is attributed to the considerable chain folding and plasticization effects by the largest hydrophilic dendritic core segment. All the crystalline phases are bilayered lamellar morphologies. On going from k1 to k2, the periodic lamellar thickness decreases in the dendron coil (1) with first generation, but interestingly increases in 3. After melting of octadecyl peripheries, 1 shows no mesophase (i.e., liquid crystalline phase). Additionally, dendron coil 2 (3) displays a network cubic mesophase with Ia3d symmetry (micellar cubic with Pm3n) which is transformed into a lamellar (hexagonal columnar) mesophase upon heating. Remarkably, the temperature-dependent mesomorphic behavior in 2 and 3 is a completely reverse pattern in comparison with conventional linear-linear block copolymers. The unusual bulk morphological phenomena in the crystalline and liquid crystalline phases can be elucidated by the dendron coil architecture and the associated coil conformational energy.  相似文献   

14.
Zhang X  Matsuo Y  Nakamura E 《Organic letters》2008,10(18):4145-4147
A dendritic deca(carbazolylphenyl)[60]fullerene bearing a cyclic benzenoid core was synthesized. The photophysical studies indicated that intramolecular energy transfer and electron transfer took place from the linked carbazolylphenyl moieties to the core-cyclic benzenoid moiety. The fluorescence quantum yield of the deca-adduct was determined to be 0.21 in toluene. Rich photophysical functions and their dendritic structures suggest that the photoactive decaadducts will serve as luminescent scaffolds in materials application.  相似文献   

15.
分别对1-3代聚(酰胺-胺)(PAMAM)结构的dendron分子的外端基和focal point进行了修饰,得到了外端基为萘(给体)色团、焦点(focal point)为丹酰(受体)色团的树枝状化合物Dan-ABπ-Nap(n=2,4,8).利用荧光光谱测定了不同浓度下所得一系列树枝状分子在水中的荧光强度,并计算了它...  相似文献   

16.
Convergent and divergent syntheses of novel organic hybrid structures termed dendron rodcoils (DRC) containing dendritic, rodlike, and coillike segments are described. The aryl ester dendron masked with 32 trifluoromethyl groups is prepared via a convergent approach using 5-(tert-butyldimethylsiloxy)isophthalic acid as the monomer unit. The activation of the focal point of the dendron allows for successful coupling between the dendron and the diblock rodcoil molecules synthesized separately. In another example, the dendritic block is grown via divergent strategy from the terminus of rodcoil using 3,5-bis(tert-butyldimethylsiloxy)benzoic acid as an AB(2) monomer. A combination of catalyzed esterification reactions and silyl deprotection chemistry proved to be a very efficient method for construction of these nanosized structures with unusual molecular architecture. Both synthetic strategies allowed for the preparation of DRCs with nearly monodisperse dendritic blocks as demonstrated by NMR, MALDI-TOF, and GPC measurements.  相似文献   

17.
A [70]fullerene-benzodifuranone acceptor dyad synthesized by a Ag?-mediated coupling reaction was used to construct a thin-film organic solar cell. The fullerene and the benzodifuranone dye in the dyad have close-lying LUMO levels in the range of 3.7-3.9 eV, so that energy transfer from the dye to the fullerene can take place. A p-n heterojunction photovoltaic device consisting of a tetrabenzoporphyrin and a [70]fullerene-benzodifuranone dyad showed a weak but discernible contribution from light absorption of the dyad to the photocurrent under both a positive and a negative effective bias. These results indicate that the benzodifuranone moiety attached to the acceptor contributes to light-harvesting by energy transfer.  相似文献   

18.
Frechet-type core-functionalized chiral diamine-based dendritic ligands and hybrid dendritic ligands condensed from polyether wedge and Newkome-type poly(ether-amide) supported multiple ligands were designed and synthesized. The solubility of hybrid dendrimers was found to be finely controlled by the polyether dendron. The catalytic efficiency and recovery use of dendritic ruthenium complexes were compared in the transfer hydrogenation of acetophenone. The core-functionalized dendritic catalysts demonstrated much better recyclability, which verified the stabilizing effects of the bulky polyether wedge on the catalytically active complex. Moreover, the dendritic catalysts were applied in the asymmetric transfer hydrogenation of ketones, enones, imine, and activated olefin, and moderate to excellent enantioselectivitiy was achieved comparable to that of monomeric catalysts.  相似文献   

19.
A series of charge-separable and hole-transporting phenylazomethine dendrimers with a triarylamine core are prepared and evaluated for use as a charge separator in dye-sensitized solar cells (DSSCs). Triphenylamine with dendric phenylazomethine (TPA-DPA) is prepared by synthesizing up to five generations of dendrons using a convergent method. The resultant dendrimer has a rigid sphere structure similar to globular protein, with a hydrodynamic radius of 2.43 nm. Electrochemical oxidation of the TPA core reveals that the dendron units in the dendrimer have 0.35 of the attenuation factor (beta) in the electron transfer. Complexation of TPA-DPA with SnCl2 proceeds in stepwise fashion from the core to the terminal imine following the basicity gradient among imine groups in each dendron shell. DSSCs prepared by casting these dendrimers onto dye-sensitized TiO2 film exhibited a higher open-circuit voltage than the bare film through the suppression of back electron transfer. The generational growth of dendrons increases the radius of the dendrimer, resulting in a stronger association with I3- and higher open-circuit voltage with an increasing number of generations. Complexation with SnCl2 reduces the resistance of TPA-DPA and improves the fill factor. The energy conversion efficiency of the DSSC prepared using fifth-generation TPA-DPA is 21% higher than that for the bare film and, when complexed with SnCl2, provides a 34% improvement.  相似文献   

20.
设计合成了1 3代芳醚骨架树枝形聚合物修饰的双8 羟基喹啉衍生物.对这些化合物在不同溶剂中的荧光光谱研究表明,随着代数的增加,目标树枝形聚合物的荧光量子产率增大,树枝形聚合物对核心发色团具有一定的隔离作用,并且目标分子内可以发生从骨架向核心发色团的能量传递.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号