首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of various amines (RNH(2); R = H, CH(3), C(2)H(5) and i-C(3)H(7)) with the methoxy methyl cation (CH(2)OCH(3)(+)) have been investigated using an FT-ICR mass spectrometer, and the experimental results are supplied with ab initio calculations. The amines show clear trends in their reactivities with variable degree of: 1) nucleophilic substitution, 2) addition-elimination and 3) hydride abstraction. In all cases addition-elimination dominates over nucleophilic substitution, and for R not equal H the observed reactions occur at the collisional limit. The potential energy profiles for all three reaction types correlate with the basicities of the amines; the more basic amine-the more favourable is the reaction; in other words: nucleophilicity follows basicity in the gas phase.  相似文献   

2.
MP2/aug-cc-pVDZ and B3LYP/cc-pVDZ calculations of the reactions of CH3SSR (R = H or CH3) with fluoride, hydroxide or allyl anion in the gas-phase were performed to determine the mechanism for both elimination and substitution reactions. The elimination reactions were shown to follow the E2 mechanism. The substitution reactions with hydroxide and fluoride proceed by the addition-elimination mechanism, but those with allyl anion proceed by the SN2 mechanism. The elimination reactions with F- and HO- are preferred to the substitution reactions, while allyl anion prefers the substitution route.  相似文献   

3.
以取代苯胺为起始原料,依次经缩合反应和硼氢化钠还原制得1,2-二胺(4a,4b);4a和4b分别与苯基二氯化膦经亲核取代反应合成了两个新型的大位阻二氨基膦配体,其结构经~1H NMR,~(13)C NMR,31P NMR和HR-MS(ESI-TOF)表征。  相似文献   

4.
The reactions of Sc(+)((3)D) with methane, ethane, and propane in the gas phase were studied theoretically by density functional theory. The potential energy surfaces corresponding to [Sc, C(n), H(2n+2)](+) (n=1-3) were examined in detail at the B3LYP/6-311++G(3df, 3pd)//B3LYP/6-311+G(d,p) level of theory. The performance of this theoretical method was calibrated with respect to the available thermochemical data. Calculations indicated that the reactions of Sc(+) with alkanes are multichannel processes which involve two general mechanisms: an addition-elimination mechanism, which is in good agreement with the general mechanism proposed from earlier experiments, and a concerted mechanism, which is presented for the first time in this work. The addition-elimination reactions are favorable at low energy, and the concerted reactions could be alternative pathways at high energy. In most cases, the energetic bottleneck in the addition-elimination mechanism is the initial C--C or C--H activation. The loss of CH(4) and/or C(2)H(6) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed along both the initial C--C activation branch and the Cbond;H activation branch. The loss of H(2) from Sc(+)+C(n)H(2n+2) (n=2, 3) can proceed not only by 1,2-H(2) and/or 1,3-H(2) elimination, but also by 1,1-H(2) elimination. The reactivity of Sc(+) with alkanes is compared with those reported earlier for the reactions of the late first-row transition-metal ions with alkanes.  相似文献   

5.
The gas phase reactions between HF and the protonated alkyl fluorides MeFH+, EtFH+, Pr(i)FH+, and Bu(t)FH+ have been studied using ab initio methods. The potential energy profiles for both nucleophilic substitution (S(N)2) and elimination (E2) pathways have been investigated. Both backside Walden inversion and frontside nucleophilic substitution reaction profiles have been generated. Backside substitution is very favourable, but shows relatively little variation with the alkyl group. Frontside substitution reaction barriers are only slightly higher than the barrier for backside substitution for HF + MeFH+, and the difference in barrier heights for frontside and backside displacement seems negligible for the larger alkyl groups. Reaction barrier trends have been analysed and compared with the results of similar studies of the H2O/ROH2+ and NH3/RNH3+ systems (R = Me, Et, Pr(i), and Bu(t)). Compared to the two other classes, protonated fluorides have extreme structures which, with the exception of the Me substrate, are weakly bound complexes between an alkyl cation and HF. The results nourish the idea that nucleophilic substitution reactions are better understood in view of competition between frontside and backside substitution than from the traditional S(N)1/S(N)2 perspective.  相似文献   

6.
Selective bromine-magnesium exchange on 2-benzyl-5-bromo-4-methoxypyridazin-3(2H)-one could be achieved when MesMgBr was used as reagent. With more nucleophilic RMgCl species (R = Bu, i-Pr, Ph) both nucleophilic addition-elimination at C-4 and bromine-magnesium exchange at C-5 occurred. In 2-benzyl-5-bromopyridazin-3(2H)-one, which does not contain a substituent at C-4, addition could not be suppressed. Less nucleophilic Mg amides (TMPMgCl·LiCl) allowed regioselective C-H magnesiation at the C-4 position in such substrates, as exemplified for 2-benzyl-5-chloro- and 2-benzyl-6-chloropyridazin-3(2H)-one. Quenching of the magnesiated pyridazinones with electrophiles gives access to a variety of hitherto unknown pyridazin-3(2H)-one derivatives.  相似文献   

7.
《Tetrahedron letters》1987,28(40):4653-4656
The photostimulated reactions of aryl iodides with 2-naphthylamide ions in liquid ammonia gave 1-aryl-2-naphthylamines as the major substitution product. This reaction is proposed to occur by the SRN1 mechanism of nucleophilic substitution  相似文献   

8.
The theoretical investigations were performed on the reaction mechanisms for the title reactions CH(3)C(O)CH(3) + Cl --> products (R1), CH(3)C(O)CH(2)Cl + Cl --> products (R2), CH(3)C(O)CHCl(2) + Cl --> products (R3), and CH(3)C(O)CCl(3) + Cl --> products (R4) by ab initio direct dynamics approach. Two different reaction channels have been found: abstract of the H atom from methyl (--CH(3)) group or chloromethyl (--CH(3-n)Cl(n)) group of chloroacetone and addition of a Cl atom to the carbon atom of the carbonyl group of chloroacetone followed by methyl or chloromethyl eliminations. Because of the higher potential energy barrier, the contribution of addition-elimination reaction pathway to the total rate constants is very small and thus this pathway is insignificant in atmospheric conditions. The rate constants for the H-abstraction reaction channels are evaluated by using canonical variational transition state theory incorporating with the small-curvature tunneling correction. Theoretical overall rate constants are in good agreement with the available experimental values and decrease in the order of k(1) > k(2) > k(3) > k(4). The results indicate that for halogenated acetones the substitution of halogen atom (F or Cl) leads to the decrease in the C--H bond reactivity and more decrease of reactivity is caused by F-substitution.  相似文献   

9.
Nucleophilic addition-elimination of ortho- or para-substituted phenols to aryl trifluorovinyl ethers (TFVEs) in N,N-dimethylformamide was studied. Using sodium hydride as a base afforded vinyl substitution products R-Ar-O-CF=CF-O-Ar-R', where R or R' = H, Br, OMe, tert-Bu, or Ph. The vinyl substitution products produced mixtures of (Z)/(E)-isomers and this isomer ratio was influenced by substitution with more sterically encumbered phenol nucleophiles. Reactions using caesium carbonate afforded addition products R-Ar-O-CHFCF(2)-O-Ar-R' whereas upon dehydrofluorination using sodium hydride produced vinyl substitution products. The preparation of vinyl substituted and addition products proceeded in overall good isolated yields and were elucidated using (1)H and (19)F NMR, GC-MS, and X-ray analysis. Vinyl substituted products were inert to UV light and chemical reactivity using common polymerization promoters. Thermal activation of the (Z)/(E)-fluoroolefin (-CF=CF-) was observed at an onset of 310 °C in nitrogen using differential scanning calorimetry (DSC) producing insoluble network material. The synthesis, characterization, and mechanism for stereoselectivity are discussed.  相似文献   

10.
Three archetypal ion pair nucleophilic substitution reactions at the methylsulfenyl sulfur atom LiX+CH3SX-->XSCH3+LiX (X=Cl, Br, and I) are investigated by the modified Gaussian-2 theory. Including lithium cation in the anionic models makes the ion pair reactions proceed along an SN2 mechanism, contrary to the addition-elimination pathway occurring in the corresponding anionic nucleophilic substitution reactions X-+CH3SX-->XSCH3+X-. Two reaction pathways for the ion pair SN2 reactions at sulfur, inversion and retention, are proposed. Results indicate the inversion pathway is favorable for all the halogens. Comparison of the transition structures and energetics for the ion pair SN2 at sulfur with the potential competition ion pair SN2 reactions at carbon LiX+CH3SX-->XCH3+LiXS shows that the SN2 reactions at carbon are not favorable from the viewpoints of kinetics and thermodynamics.  相似文献   

11.
The gas phase reactions between NH3 and the protonated amines MeNH3+, EtNH3+, PriNH3+, and Bu(t)nH3+ have been studied by high level ab initio methods. Mass spectrometric experiments yielded no significant reaction products; this result being consistent with the calculated reaction barriers. The potential energy profiles for both nucleophilic substitution (SN2) and elimination (E2) pathways have been investigated. Both back side Walden inversion (SNB) and front side (SNF) nucleophilic reaction profiles have been generated. The SNB reaction barriers are found to be higher for the more alkyl substituted reaction centres. Reaction barrier trends have been analysed and compared with the results of a similar study of the H2O-ROH2+ system (R = Me, Et, Pri, and Bu(t)).  相似文献   

12.
A chiral polymer incorporating an (R,R)-salen moiety was synthesized by the polymerization of (R,R)-1,2-diaminocyclohexane with 2,5-dibutoxy-1,4-di(salicyclaldehyde)-1,4-diethynyl-benzene by a nucleophilic addition-elimination reaction. The fluorescence responses of the (R,R)-salen-based polymer toward various metal ions were investigated by fluorescence spectra. Compared with other cations, such as Na(+), K(+), Mg(2+), Ca(2+), Mn(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), Cu(2+), Ag(+), Cd(2+), Hg(2+), and Pb(2+), Zn(2+) can lead to a pronounced fluorescence enhancement as high as 7.8-fold together with an obvious blue-shift change of the chiral polymer. More importantly, the fluorescent color of the polymer changed to bright blue instead of weak yellow after addition of Zn(2+), which can be easily detected by the naked eye. The results indicate that this kind of chiral polymer, incorporating an (R,R)-salen moiety as a receptor in the main chain backbone, can exhibit high sensitivity and selectivity for Zn(2+) recognition.  相似文献   

13.
Preparation and isolation of dibenzodioxin cation radical perchlorate ( 2 ) by oxidation of dibenzodioxin in ethyl acetate-lithium perchlorate at a platinum anode has been achieved. Reasonably pure 2 in amounts of 150–200 mg. were obtained reliably and reproducibly. Reaction of 2 with both nitrite and nitrate ions gave 2-nitrodibenzodioxin ( 3 ). Reaction of 2 with pyridine gave N-(2-dibenzodioxinyl)pyridinium perchlorate ( 4 ). Reaction with water gave, as anticipated, the stoichiometric amount of dibenzodioxin. Reaction with ammonia, propylamine, t-butylamine, and cyanide ion also gave dibenzodioxin with no evidence that nucleophilic substitution had occurred. It is believed that the formation of 3 and 4 represent the first examples of nucleophilic substitution into dibenzodioxin via its cation radical.  相似文献   

14.
A variety of hexaorganotellurium compounds, Ar(6-n)(CH3)nTe [Ar=4-CF3C6H4, n=0 (1a), n=1 (3a), n=2 (trans-4a and cis-4a), n=3 (mer-5a), n=4 (trans-6a); Ph, n=0 (1b), n=1 (3b), n=2 (trans-4b); 4-CH3C6H4, n=0 (1c), n=1 (3c), n=2 (trans-4c), n=4 (trans-6c); 4-BrC6H4, n=0 (1d)] and Ar5(R)Te [Ar=4-CF3C6H4, R=4-CH3OC6H4 (8); Ar=4-CF3C6H4, R=vinyl (9), Ar=Ph, R=vinyl (10), Ar=4-CF3C6H4, R=PhSCH2 (11), Ar=Ph, R=PhSCH2 (12), Ar=4-CF3C6H4, R=nBu (13)] and pentaorganotellurium halides, Ar5TeX [Ar=4-CF3C6H4, X=Cl (2a-Cl), X=Br (2a-Br); Ar=Ph, X=Cl (2b-Cl), X=Br (2b-Br); Ar=4-CH3C6H4, X=Cl (2c-Cl), X=Br (2c-Br); Ar=4-BrC6H4, X=Br (2d-Br)] and (4-CF3C6H4)4(CH3)TeX [X=Cl (trans-7a-Cl) and X=Br (trans-7a-Br)] were synthesized by the following methods: 1) one-pot synthesis of 1 a, 2) the reaction of SO2Cl2 or Br2 with Ar5Te(-)Li+ generated from TeCl4 or TeBr4 with five equivalents of ArLi, 3) reductive cleavage of Ar(6-m)(CH3)(m)Te (m=0 or 2) with KC8 followed by treatment with CH3I, 4) valence expansion reaction from low-valent tellurium compounds by treatment with KC8 followed by reaction with CH3I, 5) nucleophilic substitution of Ar(6-y-z)(CH3)zTeX(y-z) (X=Cl, Br, OTf; z=0, 1; y=1, 2) with organolithium reagents. The scope and limitations and some details for each method are discussed and electrophilic halogenation of the hexaorganotellurium compounds is also described.  相似文献   

15.
Chiral water-soluble secondary phosphines (2-6) were obtained by nucleophilic phosphination of FC(6)H(4)-4-SO(3)K (1a), FC(6)H(3)-2,4-(SO(3)K)(2) (1b), and FC(6)H(4)-2-SO(3)K (1c) with RPH(2) (R = Ph, 2,4,6-Me(3)C(6)H(2), 2,4,6-iPr(3)C(6)H(2)) in the superbasic medium DMSO/KOH by employing steric control of substitution at phosphorus by bulky substituents R and sulfonic groups in the ortho position of the aromatic ring systems in 1b or 1c. The secondary phosphines may be deprotonated in DMSO/KOH to give phosphido anions which on reaction with alkyl halides (PhCH(2)Cl, Br(CH(2))(3)Br, and C(12)H(25)Br) yield mono- or bidentate tertiary phosphines (7-10). Ligands of this type are alternatively accessible by nucleophilic arylation of secondary phosphines, e.g. Ph(Me)PH or Ph(H)P(CH(2))(3)P(H)Ph with 1a or 1b, respectively. The crystal structure of the starting material 1b.H(2)O (space group P2(1)/m) has been determined. In the solid state of 1b.H(2)O the individual molecules are interconnected by ionic interactions between the potassium cations and the SO(3)(-) anions. The C-F bond (C(1)-F 1.347(4) ?) is shorter than that in C(6)H(5)F (1.356(4) ?). The unit cell of 7a.0.5H(2)O (space group P&onemacr;), the first structurally characterized chiral phosphine with a sulfonated phenyl substituent, contains the two enantiomers. Due to the asymmetrical substitution at phosphorus the PC(3) skeletons are significantly distorted (P(1)-C(1,11,31) 1.864(10), 1.825(8), 1.841(7) ?). The electronic structure of sulfonated fluorobenzenes FC(6)H(5)(-)(n)()(SO(3)M)(n)() (M = K, NH(4), n = 1-3) is discussed on the basis of quantum chemical calculations. In particular, the reactivity difference toward nucleophilic phosphination within the series is rationalized in terms of steric factors and of the -I effect of the sulfonic groups.  相似文献   

16.
Using the -CHR-(CH2)3-NFCH3(R=H, CH3, CH2CF3, CHO, COCH3) as the computational model, the two possible intramolecular reactions, nucleophilic substitution on nitrogen and elimination reaction, were studied at the theoretical level of MP2(full)/6-31+G(d,p). The results indicate that the elimination mechanism, when the -CHR radical is more basic (R=H, CH3, CH2CF3) leading to linear products R-CH2-(CH2)3N=CH2 is preferred. In contrast, electro-withdrawing groups CHO and COCH3 on the attacking site will favor the intramolecular nucleophilic substitution of nitrogen and form 5-membered heterocyclic compounds. These theoretical predictions agree with the available experiments.  相似文献   

17.
The reactivity of strained [1]ferrocenophanes, [Fe(eta-C5H4)2ERx] (ERx = SiMe2, 1a: SiMePh, 1b; SnR2, 1c), towards boron halides has been investigated and has been shown to provide a facile pathway to ferrocene derivatives functionalized with Lewis acidic boron centers. The boron halides RBX2 (R = Cl, Ph, fc; X = Cl, Br) (fc = Fe(eta-C5H4)2) lead to selective cleavage of the Si-Cp bonds in 1a and 1b to give, depending on the reaction stoichiometry, functionalized mono- or diferrocenylboranes RnB [(eta-C5H4)Fe(eta-C5H4SiMe2Cl)](3-n) (2a: R = Cl, n = 2; 2b: R = Cl, n = 1; 2c: R = Ph, n = 1) and RnB[(eta-C5H4)Fe(eta-C5H4SiMePhCl)](3-n) (2d: R = Cl, n = 2) in high yields. Compounds 2a-d were characterized by multinuclear NMR spectroscopy, mass spectrometry, and by single-crystal X-ray diffraction (for 2b). Most likely due to steric constraints, a triferrocenylborane was not obtained even from the reaction of BCl3 with an excess of 1a, whereas facile formation of the diferrocenylphenylborane 2c from PhBCl2 and two equivalents of 1a was observed. Selective hydrolysis of the B-Cl bonds of chlorodiferrocenylborane 2b in the presence of trace amounts of water led to the silylated tetranuclear ferrocene complex [(ClMe2Sifc)2B-O-B(fcSiMe2Cl)2] (3) without cleavage of the Si-Cl bonds. The structure of 3 was confirmed by an X-ray diffraction study. Studies of the reactivity of the higher Group 14 homologue of 1a and 1b, the tin-bridged [1]ferrocenophane 1c, revealed that facile addition of B-Cl bonds occurs across the Sn-Cp bonds to yield the 1-stannyl-1'-borylferrocenes [(ClMes2Sn)fc(BClR)] (4a: R = Cl; 4b: R = Ph; Mes = 2,4,6-Me3C6H2). The new synthetic methodology can be extended to bifunctional Lewis acids such as the bis(boryl)ferrocene 1,1'-fc(BBr2)2, which affords the linear boron-bridged ferrocene trimer 1,1'-[fc[B(Br)fcSiMe2Br]2] 5 in 54% isolated yield. In order to incorporate the functionalized ferrocenylboranes into polymer structures, compound 2c was reduced with Li[BEt3H] to give the silicon-hydride functionalized species [PhB[(eta-C5H4)Fe(eta-C5H4SiMe2H)]2] (6), which was then used as a capping reagent in the transition metal catalyzed polymerization of 1a. This process leads to the incorporation of the ferrocenylborane unit into the main chain of a poly(ferrocenylsilane) to afford [PhB-[(fcSiMe2)(n-1)fcSiMe2H]2] (7).  相似文献   

18.
Addition of amine nucleophiles to acetonitrile solutions of the OsIV anilido complex TpOs(NHPh)Cl2 (1) [Tp = hydrotris(1-pyrazolyl)borate] gives products with derivatized anilido ligands, i.e., TpOs[NH-p-C6H4(N(CH2)5)]Cl2 (2) from piperidine and TpOs[NH-p-C6H4N(CH2)4]Cl2 (3) from pyrrolidine. These materials are formed in approximately 30% yield under anaerobic conditions, together with approximately 60% yields of the OsIII aniline complex TpOs(NH2Ph)Cl2 (5). Formation of the para-substituted materials 2 or 3 from 1 involves oxidative removal of two hydrogen atoms (two H+ and two e-). The oxidation can be accomplished by 1, forming 5, or by O2. Related reactions have been observed with other amines and with the 2-naphthylamido derivative, which gives an ortho-substituted product. Kinetic studies indicate an addition-elimination mechanism involving initial attack of the amine nucleophile on the anilido ligand. These are unusual examples of nucleophilic aromatic substitution of hydrogen. Ab initio calculations on 1 show that the LUMO has significant density at the ortho and para positions of the anilido ligand, resembling the LUMO of nitrobenzene. By analogy with nucleophilic aromatic substitution, 2 is quantitatively formed from piperidine and the p-chloroanilide TpOs(NH-p-C6H4Cl)Cl2 (7). Binding the anilide ligands to an oxidizing OsIV center thus causes a remarkable umpolung or inversion of chemical character from a typically electron-rich anilido to an electron-deficient aromatic functionality. This occurs because of the coupling of redox changes at the TpOsIV center with bond formation at the coordinated ligand.  相似文献   

19.
The kinetics of the solvolysis of Me3SiCHCl2 (I), Me3SiCHBr2 (II), Me3SiCHI2 (III) and Me3SICCl2Me (IV) in the system n-propanol/water (8/2 v/v) in the presence of an NH3/NH4Cl buffer have been investigated. The results show that α-haloalkyl groups are removed from silicon by two routes: (1) by nucleophilic substitution as a result of attack of a conjugate base of the solvent on silicon, and (2) by base-catalysed ammonia substitution. The existence of the latter route is connected with the fact that α-haloalkyls are very poor leaving groups in nucleophilic substitutions.The relative reactivities at 25° are as follows, I/II/III/IV = 1/116/246/0.2 for route 1 and I/II/III/IV = 1/24/49/0.05 for route 2.The reactivity increases with increasing stabilization of the negative charge in the separating carbanion, but there is also evidence that the back-strain in the leaving group affects the reactivity.  相似文献   

20.
The fragmentation reactions of a variety of alkylphenylammonium ions, C(6)H(5)NH(3 -n)R(n)(+) (n >/= 1, R = CH(3), C(2)H(5), i-C(3)H(7), n-C(4)H(9)) were studied by energy-resolved mass spectrometry. Ionization was by fast atom bombardment (FAB) or electrospray ionization. Energy-resolved fragmentation data were obtained by low-energy collision-induced dissociation (CID) in the quadrupole cell of a hybrid sector/quadrupole instrument following FAB ionization and by cone-voltage CID in the interface region of the electrospray/quadrupole instrument. A comparison of the two methods of obtaining energy-resolved data showed that very similar results are obtained by the two methods. The fragmentation reactions of the alkylphenylammonium ions are rationalized in terms of competitive formation of an [R(+)-NC(6)H(5)H(3-n)R(n-1)] complex or a [C(6)H(5)H(3-n)R(n-1)N(+.)-(.)R] complex. The former complex fragments by internal proton transfer to yield C(6)H(5)H(3 -n)R(n -1)NH(+) and [R -H] whereas the latter complex fragments to form C(6)H(5)H(3 -n)R(n -1)N(+) and an alkyl radical. Alkane elimination, which is very prominent for tetraalkylammonium ions, most likely involves sequential elimination of an alkyl radical and either an H atom or an alkyl radical for the phenyl-substituted ammonium ions. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号