首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study of the state of solvation of the adenine ring in adenosine and adenosine 5-monophosphate disodium salt in water and in a (7.5:2.5) water–TFE mixture has been carried out by measurement of homo- and heteronuclear intermolecular NOE enhancements between water or TFE and the aromatic protons of these compounds. The results give evidence of site specificity in solute–solvent interaction for both solvent systems and preferential solvation of the solute by TFE in the water–TFE mixture. Significant pH dependence of these interactions has been discovered.  相似文献   

2.
The preferential solvation of water plays an important role in ferrocene research which is a subject of current interest. Voltammetric investigations were carried out for Au electrode in acetonitrile/water, showing preferential solvation of water. In our work, the preferential solvation of water in acetonitrile/water was studied by electrochemical methods including cyclic volitammetry, electrochemical impedance spectra and double‐step chronoamperometry. Ferrocenemethanol (FcCH2OH) molecules as a solute spontaneously adsorb on the electrode surface in anhydrous acetonitrile, resulting from acetonitrile molecules tend to form an acetonitrile solvent layer on the surface of the electrode and acetonitrile solvent layer has a lower energy barrier than the aqueous solvent layer, which has been obtained by modeling solvation. The solvent strongly influences electrochemical behavior of solute. Once there is an amount of water in acetonitrile solvent, FcCH2OH that adsorbed on the electrode surface desorb. This is because water preferentially solvate with FcCH2OH in term of intermolecular forces between solvent and solute. Moreover, hydrogen bond between water molecules and FcCH2OH molecules is stronger than dipole‐dipole interaction between acetonitrile molecules and FcCH2OH molecules in solvation effect. Through electrochemical behavior of FcCH2OH changing, preferential solvation of water is analyzed by electrochemical methods.  相似文献   

3.
A new implicit solvation model was developed for calculating free energies of transfer of molecules from water to any solvent with defined bulk properties. The transfer energy was calculated as a sum of the first solvation shell energy and the long-range electrostatic contribution. The first term was proportional to solvent accessible surface area and solvation parameters (σ(i)) for different atom types. The electrostatic term was computed as a product of group dipole moments and dipolar solvation parameter (η) for neutral molecules or using a modified Born equation for ions. The regression coefficients in linear dependencies of solvation parameters σ(i) and η on dielectric constant, solvatochromic polarizability parameter π*, and hydrogen-bonding donor and acceptor capacities of solvents were optimized using 1269 experimental transfer energies from 19 organic solvents to water. The root-mean-square errors for neutral compounds and ions were 0.82 and 1.61 kcal/mol, respectively. Quantification of energy components demonstrates the dominant roles of hydrophobic effect for nonpolar atoms and of hydrogen-bonding for polar atoms. The estimated first solvation shell energy outweighs the long-range electrostatics for most compounds including ions. The simplicity and computational efficiency of the model allows its application for modeling of macromolecules in anisotropic environments, such as biological membranes.  相似文献   

4.
The entropy of solvation of an ion contains contributions from i) the change of the volume at its disposal, ii) long-range electrostatic effects, iii) immobilization of solvent molecules in the first solvation shell, and iv) effects on the structure of the solvent. The last item is important in water, but can be ignored in less structured solvents. Standard ionic entropies of transfer from water to a dozen solvents are used for the estimation of the entropy of solvent immobilization, and the (extrapolated) entropy of freezing of the solvent is then used to estimate the number of solvent molecules immobilized.Presented in part at the IX ICNAS (International Conference on Non-Aqueous Solutions), Pittsburgh, PA, August 1984.  相似文献   

5.
The thermodynamic functions of complex formation of benzo-15-crown-5 ether (B15C5) and sodium cation (Na+) in the mixtures of propan-1-ol (PrOH) with water at 298.15 K have been calculated from experimental measurements. The equilibrium constants of B15C5/Na+ complex formation have been determined by conductivity measurements. The enthalpic effect of complex formation has been measured by a calorimetric method. The complexes are enthalpy stabilized but entropy destabilized in the PrOH–H2O mixtures. The effects of preferential solvation of B15C5 by molecules of the organic solvent, solvation of the sodium cation, as well as the acid-base properties of propan-1-ol–water mixtures on the complex formation processes are discussed.  相似文献   

6.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

7.
The preferential solvation of solutes in mixed solvent systems is an interesting phenomenon that plays important roles in solubility and kinetics. In the present study, solvation of a lithium atom in aqueous ammonia solution has been investigated from first principles molecular dynamics simulations. Solvation of alkali metal atoms, like lithium, in aqueous and ammonia media is particularly interesting because the alkali metal atoms release their valence electrons in these media so as to produce solvated electrons and metal counterions. In the present work, first principles simulations are performed employing the Car-Parrinello molecular dynamics method. Spontaneous ionization of the Li atom is found to occur in the mixed solvent system. From the radial distribution functions, it is found that the Li(+) ion is preferentially solvated by water and the coordination number is mostly four in its first solvation shell and exchange of water molecules between the first and second solvation shells is essentially negligible in the time scale of our simulations. The Li(+) ion and the unbound electron are well separated and screened by the polar solvent molecules. Also the unbound electron is primarily captured by the hydrogens of water molecules. The diffusion rates of Li(+) ion and water molecules in its first solvation shell are found to be rather slow. In the bulk phase, the diffusion of water is found to be slower than that of ammonia molecules because of strong ammonia-water hydrogen bonds that participate in solvating ammonia molecules in the mixture. The ratio of first and second rank orientational correlation functions deviate from 3, which suggests a deviation from the ideal Debye-type orientational diffusion. It is found that the hydrogen bond lifetimes of ammonia-ammonia pairs is very short. However, ammonia-water H-bonds are found to be quite strong when ammonia acts as an acceptor and these hydrogen bonds are found to live longer than even water-water hydrogen bonds.  相似文献   

8.
曾勇平  时荣  杨正华 《物理化学学报》2013,29(10):2180-2186
采用Car-Parrinello分子动力学(CPMD)方法分别研究了Be2+在水、甲醇和乙醇中的溶剂结构性质, 并对Be2+的第一溶剂壳结构的实验及理论结果进行了比较. 所得第一溶剂壳结构与已报道的实验和理论结果较为一致. 对径向分布函数、配位数以及角度分布等进行了详细的分析. 结果表明: 在水、甲醇和乙醇中, Be2+第一溶剂壳为稳定理想的四面体结构. 在本文的模拟时间尺度内,没有观察到第一溶剂壳中的分子与第二溶剂壳中的分子进行交换, 进一步证明Be2+第一溶剂壳为稳定的四配位结构. 根据计算得到的空间分布函数, Be2+在溶剂分子的等高面上主要集中分布在溶剂分子接受氢键的方向. 根据氧原子在Be2+周围的分布, 壳层分子主要集中分布在Be2+周围的四个区域, 进一步证实溶剂壳为四面体对称.  相似文献   

9.
Complementary results from 13C intermolecular nuclear Overhauser effects (NOE), 1H-13C heteronuclear Overhauser spectroscopy (HOSEY) and 1H-NMR diffusion measurements were used for probing the structure of the first solvation shell of uridine in water. It is demonstrated that a cyclic dihydrate is formed. The two water molecules produce two hydrogen bonds with the two oxygen atoms from the pyrimidine ring and accept only one hydrogen bond from the amide proton. The dihydrate has only a short lifetime as compared with the rotational correlation time of the free nucleoside. The chemical exchange constant of the amide proton with water is then estimated by diffusion experiments. The results are consistent with previous data obtained for uracil in water and provide interesting information about water accessibility in nucleic acid bases.  相似文献   

10.
Solvent mixtures often alter the solubility of polymeric substances. Statistical copolymers made from 2-methyl-2-oxazoline (MeOx) and 2-phenyl-2-oxazoline (PhOx) are known for their varying solubilities in pure ethanol, pure water and in binary mixtures of ethanol-water. Constrained Molecular Dynamics (MD) simulations have been carried out with an aim to explain the varying solubilities of the statistical MeOx-PhOx copolymers. The solute-solvent dynamic friction kernels calculated through constrained MD simulations corroborate the solubility pattern in these copolymers. The solvation characteristics have been analyzed in terms of the solute-solvent radial distribution functions (RDFs). The ethanol-soluble MeOx-PhOx copolymers exhibit characteristic solute-composition dependence in the dynamic solute-solvent friction kernels, indicating the strength of the solute-solvent correlations. The aggressive solvation by the ethanol molecules in the binary solvent mixtures has been brought out by the O(solute)-H(ethanol) RDFs which exhibit a characteristic dependence on the ethanol content in the solvent composition. The corresponding O(solute)-H(water) RDFs are devoid of any such composition dependence. For all the MeOx-PhOx copolymers, the O-site solvation is strongly dominated by the water molecules and the N-sites are solvated equally by both ethanol and water molecules.  相似文献   

11.
The time dependent change in the intermolecular response of solvent molecules following photoexcitation of Coumarin 102 (C102) has been measured in acetonitrile-water binary mixtures. Experiments were performed on mixtures of composition x(CH3CN) = 0.25, 0.50, 0.75, and 1.00. At low water concentrations (x(H2O) < or = 0.25) the solvent response is consistent with previous measurements probing dipolar solvation. With increasing water concentration (x(H2O) > or = 0.50) an additional response is found subsequent to dipolar solvation, exhibited as a rapid gain in the solvent's polarizability on a approximately 250 fs time scale. Monte Carlo simulations of the C102:binary mixture system were performed to quantify the number of hydrogen-bonding interactions between C102 and water. These simulations indicate that the probability of the C102 solute being hydrogen bound with two water molecules, both as donors at the carbonyl site, increases in a correlated fashion with the amplitude of the additional response in the measurements. We conclude that excitation of C102 simultaneously weakens and strengthens hydrogen bonding in complexes with two inequivalently bound waters.  相似文献   

12.
13.
Folded protein stabilization or destabilization induced by cosolvent in mixed aqueous solutions has been studied by differential scanning microcalorimetry and related to difference in preferential solvation of native and denatured states. In particular, the thermal denaturation of a model system formed by lysozyme dissolved in water in the presence of the stabilizing cosolvent glycerol has been considered. Transition temperatures and enthalpies, heat capacity, and standard free energy changes have been determined when applying a two-state denaturation model to microcalorimetric data. Thermodynamic parameters show an unexpected, not linear, trend as a function of solvent composition; in particular, the lysozyme thermodynamic stability shows a maximum centered at water molar fraction of about 0.6. Using a thermodynamic hydration model based on the exchange equilibrium between glycerol and water molecules from the protein solvation layer to the bulk, the contribution of protein-solvent interactions to the unfolding free energy and the changes of this contribution with solvent composition have been derived. The preferential solvation data indicate that lysozyme unfolding involves an increase in the solvation surface, with a small reduction of the protein-preferential hydration. Moreover, the derived changes in the excess solvation numbers at denaturation show that only few solvent molecules are responsible for the variation of lysozyme stability in relation to the solvent composition.  相似文献   

14.
The coordination environment of uranyl in water has been studied using a combined quantum mechanical and molecular dynamics approach. Multiconfigurational wave function calculations have been performed to generate pair potentials between uranyl and water. The quantum chemically determined energies have been used to fit parameters in a polarizable force field with an added charge transfer term. Molecular dynamics simulations have been performed for the uranyl ion and up to 400 water molecules. The results show a uranyl ion with five water molecules coordinated in the equatorial plane. The U-O(H(2)O) distance is 2.40 A, which is close to the experimental estimates. A second coordination shell starts at about 4.7 A from the uranium atom. No hydrogen bonding is found between the uranyl oxygens and water. Exchange of waters between the first and second solvation shell is found to occur through a path intermediate between association and interchange. This is the first fully ab initio determination of the solvation of the uranyl ion in water.  相似文献   

15.
Solvation of a tetrapeptide, NAc-Ser-Phe-Val-Gly-OMe (1), in water and in water/alcohol mixtures with 2,2,2-trifluoroethanol (TFE)/water or ethanol (ETH)/water has been studied by diffusion NMR and intermolecular NOE measurements. The experimental results were compared with those obtained from detailed Molecular Dynamics (MD) calculations. Independently, all three methods revealed preferential solvation on the surface of the peptide by TFE in the water/TFE mixtures, but not by ETH in the water/ETH mixtures. The MD calculations show that the TFE concentration coating the peptide is higher than that in the bulk, while for ethanol, the concentration is nearly equal to that in the bulk. Calculated site-specific preferential solvation data between TFE, ETH, and water with the different peptide groups have been compared with the NMR data and shown to be in general agreement with the experimental facts.  相似文献   

16.
Contemporary progress regarding guest/host types of excited‐state double proton transfer has been reviewed, among which are the biprotonic transfer within doubly H‐bonded host/guest complexes, the transfer through a solvent bridge relay, the intramolecular double proton transfer and solvation dynamics coupled proton transfer. Of particular emphases are the photophysical and photochemical properties of excited‐state double proton transfer (ESDPT) in 7‐azaindole and its corresponding analogues. From the chemical aspect, two types of ESDPT reaction, namely the catalytic and non‐catalytic types of ESDPT, have been classified and reviewed separately. For the case of static host/guest hydrogen‐bonded complexes both hydrogen‐bonding strength and configuration (i.e. geometry) play key roles in accounting for the reaction dynamics. In addition to the dynamical concern, excited‐state thermodynamics are of importance to fine‐tune the proton transfer reaction in the non‐catalytic host/guest type of ESDPT. The mechanisms of protic solvent assisted ESDPT, depending on host molecules and proton‐transfer models, have been reviewed where the plausible resolution is deduced. Particular attention has been given to the excited‐state proton transfer dynamics in pure water, aiming at its future perspective in biological applications. Finally, the differentiation in mechanism between solvent diffusive reorganization and solvent relaxation to affect the host/guest ESPT dynamics is made and discussed in de tail.  相似文献   

17.
An analysis of the water molecules in the first solvation shell obtained from the molecular dynamics simulation of the amyloid beta(10-35)NH2 peptide and the amyloid beta(10-35)NH2E22Q "Dutch" mutant peptide is presented. The structure, energetics, and dynamics of water in the hydration shell have been investigated using a variety of measures, including the hydrogen bond network, the water residence times for all the peptide residues, the diffusion constant, experimentally determined HN amide proton exchange, and the transition probabilities for water to move from one residue to another or into the bulk. The results of the study indicate that: (1) the water molecules at the peptide-solvent interface are organized in an ordered structure similar for the two peptide systems but different from that of the bulk, (2) the peptide structure inhibits diffusion perpendicular to the peptide surface by a factor of 3 to 5 relative to diffusion parallel to the peptide surface, which is comparable to diffusion of bulk water, (3) water in the first solvation shell shows dynamical relaxation on fast (1-2 ps) and slow (10-40 ps) time scales, (4) a novel solvent relaxation master equation is shown to capture the details of the fast relaxation of water in the peptide's first solvation shell, (5) the interaction between the peptide and the solvent is stronger in the wild type than in the E22Q mutant peptide, in agreement with earlier results obtained from computer simulations [Massi, F.; Straub, J. E. Biophys J 2001, 81, 697] correlated with the observed enhanced activity of the E22Q mutant peptide.  相似文献   

18.
An extensive set of measurements of the heats of solution of a number of fluorine-containing gases (CCl2F2, CClF3, CBrF3, CF4) have been performed from 5 to 45°C. The temperature dependence allows accurate determination of the heat capacity change in the solution process as a function of temperature. To a first approximation these heat capacity results agree with the predictions of the simple two energy state model for water molecules in the first solvation shell. The further extension of the general applicability of this model, originally developed to account for the thermodynamic properties of solvation of hydrocarbon and other small apolar gases in water, suggests that the unique thermodynamic properties of hydrophobic solvation are largely determined by the water molecules in the first solvation shell.  相似文献   

19.
The solvation of the lithium and sodium ions in dimethyl sulfoxide solution was theoretically investigated using ab initio calculations coupled with the hybrid cluster-continuum model, a quasichemical theory of solvation. We have investigated clusters of ions with up to five dimethyl sulfoxide (DMSO) molecules, and the bulk solvent was described by a dielectric continuum model. Our results show that the lithium and sodium ions have four and five DMSO molecules into the first coordination shell, and the calculated solvation free energies are -135.5 and -108.6 kcal mol(-1), respectively. These data suggest a solvation free energy value of -273.2 kcal mol(-1) for the proton in dimethyl sulfoxide solution, a value that is more negative than the present uncertain experimental value. This and previous studies on the solvation of ions in water solution indicate that the tetraphenylarsonium tetraphenylborate assumption is flawed and the absolute value of the free energy of transfer of ions from water to DMSO solution is higher than the present experimental values.  相似文献   

20.
Using molecular dynamics experiments, we analyze equilibrium and dynamical characteristics related to the solvation of excess protons in water-acetone mixtures. Our approach is based on the implementation of an extended valence-bond Hamiltonian, which incorporates translocation of the excess charge between neighboring water molecules. Different mixtures have been analyzed, starting from the pure water case down to solutions with a water molar fraction x(w) = 0.25. In all cases, we have verified that the structure of the first solvation shell of the H(3)O(+) moiety remains practically unchanged, compared to the one observed in pure water. This shell is composed by three water molecules acting as hydrogen bond acceptors, with no evidence of hydrogen bond donor-like connectivity. Moreover, the increment in the acetone concentration leads to a gradual stabilization of Eigen-like [H(3)O[middle dot](H(2)O)(3)](+) configurations, in detriment of Zundel-like [H[middle dot](H(2)O)(2)](+) ones. Rates of proton transfer and proton diffusion coefficients have been recorded at various water-acetone relative concentrations. In both cases, we have found a transition region, in the vicinity of x(w) ~ 0.8, where the concentration dependences of the two magnitudes change at a quantitative level. A crude estimate shows that, at this tagged concentration, the volumes "occupied" by the two solvents become comparable. The origins of this transition separating water-rich from acetone-rich realms is rationalized in terms of modifications operated in the nearby, second solvation shell, which in the latter solutions, normally includes at least, one acetone molecule. Our results would suggest that one possible mechanism controlling the proton transfer in acetone-rich solutions is the exchange of one of these tagged acetone molecules, by nearby water ones. This exchange would give rise to Zundel-like structures, exhibiting a symmetric, first solvation shell composed exclusively by water molecules, and would facilitate the transfer between neighboring water molecules along the resonant complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号