首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current investigation involves a continuous adsorption experiment in a packed bed column for the sorptive elucidation of fluoride from contaminated groundwater using an activated soil-clay mixture. Through the combination of naturally accessible laterite soil with silica enriched clay (3:1 ratio), a low-cost Al–Si heterogeneous material has been developed. Following detailed characterization, the developed materials were employed in a long-time column process to achieve a high degree of fluoride separation from real-world groundwater. In a packed bed column investigation, the effect of bed height, initial fluoride concentration, and flow rate on the breakthrough properties of the adsorption system were investigated. By using a non-linear regression equation, three model kinetics, such as the Thomas Model, Adams-Bohart Model, and Yoon-Nelson Model, were fitted to validate the column-based experimental data, by analysing the breakthrough curves profiles, and distinct kinetic parameters. The Bed Depth Service Time Analysis (BDST) model was tested to express the effect of bed height on breakthrough curves, as well as to predict the time for breakthrough, and material depletion under optimal conditions. The Thomas and Yoon-Nelson models were identified to be the most appropriate ones for describing the entire breakthrough curve, whereas the Adams-Bohart model was only utilised to predict the first half of the dynamic process. With correlation coefficients (R2) 0.96, the experimental results were well suited to Thomas, Yoon-Nelson, and Adams-Bohart models. Finally, regeneration assessment was carried out where even after four cycles of operation, regenerated adsorbent showed a rejection efficacy of 78% to fluoride that proves the viability of the material and methodology.  相似文献   

2.
Using competitive frontal analysis, the binary adsorption isotherms of the enantiomers of 1-phenyl-l-propanol were measured on a microbore column packed with a chiral stationary phase based on cellulose tribenzoate. These measurements were carried out using only the racemic mixture. The experimental data were fitted to four different isotherm models: Langmuir, BiLangmuir, Langmuir-Freundlich and Tóth. The BiLangmuir and the Langmuir-Freundlich models accounted best for the competitive adsorption data. An excellent agreement between the experimental and the calculated overloaded band profiles for various samples of racemic mixture was obtained when the equilibrium dispersive model of chromatography was used together with the BiLangmuir competitive isotherm. The isotherm parameters measured under competitive conditions were used to calculate the overloaded band profiles of large samples of the pure S- and R-enantiomers, too. A satisfactory agreement between the experimental and calculated band profiles was observed when using in the computation the corresponding single component BiLangmuir isotherm derived from the binary isotherm previously determined. Thus oniy data derived from the racemic mixture are required for computer optimization of the preparative chromatography separation of the enantiomers.  相似文献   

3.
Modified waste sugarcane bagasse (SCB) was prepared to remove cationic dyes: methylene blue and rhodamine B from aqueous solution by using a continuous mode. Effects of flow rate on adsorption of the two dyes in fixed bed column were studied. Competitive adsorption kinetics of the two dyes in binary system was investigated in detail. Results showed that the adsorption capacities of the modified sorbent for methylene blue and rhodamine B in one component system were 1.7 and 0.4 mmol g?1, respectively. Competitive adsorption process in the binary system could be divided into three phases: free adsorption, substitution adsorption and adsorption equilibrium. 0.19 mmol of rhodamine B absorbed was replaced by 0.35 mmol of methylene blue in the second phase. Simple modified Yoon–Nelson model was used to predict the adsorption kinetics for the first time. The obtained adsorption rate constants for the two dyes in the three phases both followed the order: phase I > phase III > phase II, demonstrating that substitution adsorption phase is the rate determining step. Desorption experiment showed that the loaded two dyes could be separated and recycled by using the mixture solution of HCl (0.1 mol L?1) and ethanol as eluent. The prepared fixed bed column had great potential in industrial wastewater treatment.  相似文献   

4.
The equations of two new binary competitive isotherms models are derived. The first of these models assumes that the isotherms of the two pure, single compounds have distinct monolayer capacities. Its derivation is based on kinetic arguments. The ideal adsorbed solution (IAS) framework was applied to derive the second model that is a thermodynamically consistent competitive isotherm. This second model predicts the competitive adsorption isotherm behavior of a mixture of two compounds that have single-component adsorption behavior following a BET and/or a Langmuir isotherms. Both models apply well to the binary adsorption of ethylbenzoate and 4-tert.-butylphenol on a Kromasil-C18 column (with methanol-water, 62:38, v/v, as the mobile phase). The best single-solute adsorption isotherms of these two compounds are the liquid-solid extended multilayer BET and the Langmuir isotherms, respectively. The kinetic and thermodynamic new competitive models were compared, regarding the accuracy of their prediction of the elution band profiles of mixtures of these two compounds. A better agreement between experimental and calculated profiles was observed with the kinetic model. The IAS model failed because the behavior of the ethylbenzoate/4-tert.-butylphenol adsorbed phase mixture is probably non-ideal. The most striking result is the qualitative prediction by these models of the peak splitting of 4-tert.-butylphenol during its elution in presence of ethylbenzoate.  相似文献   

5.
Du X  Yuan Q  Zhao J  Li Y 《Journal of chromatography. A》2007,1145(1-2):165-174
Herein, two models, the general rate model taking into account convection, axial dispersion, external and intra-particle mass transfer resistances and particle size distribution (PSD) and the artificial neural network model (ANN) were developed to describe solanesol adsorption process in packed column using macroporous resins. First, Static equilibrium experiments and kinetic experiments in packed column were carried out respectively to obtain experimental data. By fitting static experimental data, Langmuir isotherm and Freundlich isotherm were estimated, and the former one was used in simulation coupled with general rate model considering better correlative coefficients. The simulated results showed that theoretical predictions of general rate model with PSD were well consistent with experimental data. Then, a new model, the ANN model, was developed to describe present adsorption process in packed column. The encouraging simulated results showed that ANN model could describe present system even better than general rate model. At last, by using the predictive ability of ANN model, the influence of each experimental parameter was investigated. Predicted results showed that with the increases of particle porosity and the ratio of bed height to inner column diameter (ROHD), the breakthrough time was delayed. On the contrary, an increase in feed concentration, flow rate, mean particle diameter and bed porosity decreased the breakthrough time.  相似文献   

6.
《印度化学会志》2023,100(2):100899
pH shifting effect on the adsorption of anionic RBB dye was tested by using untreated and CTAB-treated SBP as adsorbent in both batch and continuous systems. Characterization of the sorbents revealed the effects of surface modification. Enhanced binding sites and more porous surface structure resulted in improved adsorption capability. Flow rate and initial RBB concentration effects were tested in packed bed column. Optimum pH value of the adsorption, which was determined as 2.0 in the batch studies with untreated SBP, shifted to 8.0 with 20 g/L CTAB treated SBP. Experimental data in column studies showed the decreasing capacity with increasing flow rate and enhanced performance with increasing inlet RBB concentration for both sorbents. Maximum capacities of the columns were found as 36.9 and 2.6 mg/g with dried SBP at pH 2.0 and 8.0, respectively, at a maximum inlet RBB concentration of 500 mg/L and a minimum flow rate of 0.8 mL/min. The highest capacity value at pH 8.0 was found as 140.0 mg/g under the same operating conditions, which reveals positive effect of the treatment on adsorptive performance. Langmuir isotherm was found to be most convenient model for the all equilibrium cases in the column. Moreover, Thomas model accurately predicted the breakthrough curves of each system. This is the first study reporting the modeling data of an anionic dye adsorption in a packed bed column by using modified SBP.  相似文献   

7.
In this work, Cr(III) adsorption on activated carbon obtained from olive stones in an upflow fixed-bed column at 30C was studied. The flow rate influence on the breakthrough curves at a feed concentration of 0.87 meq/L was investigated in an attempt to minimize the diffusional resistances. Breakthrough curves for a flow range of 2–8 mL/min were obtained at 10.5 cm bed height and inlet diameter of 0.9 cm. The mass transfer parameters indicated that the bed minimal resistance was attained at 2 mL/min. Therefore, the data equilibrium was carried out until the bed was saturated at 2 mL/min. The dynamic system generated a favorable isotherm with a maximum chromium uptake of 0.45 meq/g. A column sorption mathematical model was created considering the axial dispersion in the column and the intraparticle diffusion rate-controlling steps. The isotherm was successfully modeled by the Langmuir equation and the mathematical model described the experimental dynamic data adequately for feed concentrations from 0.26 to 3.29 meq/L.  相似文献   

8.
A montmorillonite–iron oxide composite (MIOC) was prepared to assess its effectiveness in the removal of Cs+ and Sr2+ from aqueous solution. A comparative and competitive adsorption study was conducted in single and binary systems. Used materials have been characterized by X-ray diffraction (XRD) and Infrared spectroscopy. Adsorption of Cs+ and Sr2+ as a function of contact time and pH was investigated, adsorption data of single metal solutions were well fitted to the Freundlich–Langmuir isotherm models. Equilibrium isotherms for the binary removal of Cs+ and Sr2+ by MIOC have been analyzed by using non modified and extended Langmuir models with a satisfactory R 2 values. Neutral solution pH was found to be favorable for both single and binary systems. The adsorption model analysis revealed that MIOC was more selective for Sr than Cs. The maximum adsorption capacities for individual Cs+ and Sr2+ solutions were 52.6 and 55.5 mg g?1, respectively. While the maximum uptakes in the binary system were 41.6 and 47.6 mg g?1 for Cs+ and Sr2+, respectively. Column adsorption experiments were carried out at room temperature under the effect of various operating parameters such as bed depth, initial cation concentration and flow rate, Breakthrough curves were well fitted to the Thomas model. Desorption experiments were also conducted to assess the possibility for the reuse of adsorbent and the recovery of cations.  相似文献   

9.
Porous a crylonitrile (AN)/methyl acrylate (MA) copolymer beads were synthesized by suspended emulsion polymerization and amidoximated for the purpose of Ag+ adsorption. Optimum amidoximation temperature and time were determined by following the adsorption capacity for Ag+. The results showed that amidoximated AN/MA (AO AN/MA) with the amidoximation temperature 70°C and amidoximation time 20 hr had a relatively higher adsorption capacity for Ag+. The effect of pH on adsorption for Ag+ was studied; the highest adsorption capacity presented at pH 5.0. Adsorption kinetics and isotherms of AO AN/MA copolymer beads for Ag+ were also investigated. The kinetics data indicated that the adsorption process was governed by the film diffusion and followed both pseudo‐first‐order and pseudo‐second‐order rate model. The isotherms indicated that adsorption capacities increased with equilibrium concentration and temperature. The Langmuir model and Sips model could describe the isothermal process. Thermodynamic analysis revealed that the adsorption behaviors of Ag+ ions on AO AN/MA could be considered as endothermic and physical sorption process. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The copolymers of styrene and maleic anhydride resin (PSt/MA) was synthesized by free radical polymerization and characterized by means of FTIR. It is shown that the PSt/MA copolymer has rather strong coordination ability to UO2 2+ ions by chelation with the carboxylate group, and the microstructures of the U(VI)-PSt/MA complexes can be well controlled. The influence factors on UO2 2+ ions were also investigated and described in detail, such as contact time, solid/liquid ratio, pH value, ethanol content, and initial concentration. It was found that the maximum adsorption quantity of UO2 2+ was 831 mg/g. Experiments show that PSt/MA can recover UO2 2+ ions with high adsorption selectively from a simulated industry solution containing Ca2+ and Mg2+ as impurities. The adsorption kinetic data were best described by the pseudo-second-order equation, indicating that the chemical adsorption was the rate-limiting step. And there are very good correlation coefficients of linearized equations for Langmuir model, which indicated that the sorption isotherm of the PSt/MA for UO2 2+ can be fitted to the Langmuir model. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

11.
In this work we report new experimental data of pure and binary adsorption equilibrium of propane and propylene on zeolite 4A at 423 and 473 K. The pressure range studied was 0–500 kPa, which is the entire pressure range used in PSA–VSA (Pressure–Vacuum Swing Adsorption) units. The amount adsorbed of propane is much higher than that reported in previous literature. Propane diffusivity was estimated from uptake curves in the linear isotherm region. Adsorption of propane was extremely slow and equilibrium was established only after three days of adsorbate–adsorbent contact. The IAST (Ideal Adsorbed Solution Theory) using the Generalized Dubinin model to describe the pure propylene equilibrium and the Langmuir model for propane predicted with acceptable accuracy the binary adsorption data. Alternatively, the multisite model of Nitta was used to fit pure component isotherms and used in the IAST. Predictions were worse than those with the other strategy.  相似文献   

12.
The adsorption of SO2 from pseudo binary mixtures with water and CO2 on hydrophobic zeolites (MFI and MOR type) was investigated using the breakthrough curve method. The SO2 and water breakthrough curves were compared with theoretical ones based on an axially dispersed plug flow through the column and the linear driving force rate equation. In addition, different semi-predictive multi-component equilibrium equations were used for the breakthrough modeling: Langmuir 1, Langmuir 2 and Langmuir-Freundlich extended models. The overall mass transfer coefficients were derived by matching theoretical with experimental breakthrough curves for single component systems, i.e., water vapor or SO2 in a carrier gas. They were also predicted from a simplified bi-porous adsorbent model and compared with experimentally derived values. The presence of CO2 species in ternary mixtures with water vapor and SO2, even at relatively high concentrations of 9 vol%, had no significant effect on the breakthrough behavior of the other two species. For that reason the CO2 species was ignored in the analysis of the resulting pseudo binary mixtures. The breakthrough model was solved by finite element orthogonal collocation method using the commercial software gPROMS. Both extended Langmuir 1 and Langmuir 2 based models gave reasonable predictions of the water and SO2 breakthrough curves for pseudo binary mixtures involving a mordenite sample for all water concentration levels used in this study (up to 3.5 vol%). However, the same models were successfully used to predict SO2 breakthrough curves for a MFI sample only at low water concentrations, i.e., 1.5 vol%. At the higher water levels both models failed to describe equilibrium behavior in the MFI sample due to the introduction of multi-layer adsorption in the interstices between small MFI-26 crystals.  相似文献   

13.
14.
Physical and chemical characterization of algae Gelidium particles shows a gel structure, with two major binding groups, carboxylic and hydroxyl groups, with an affinity constant distribution for protons, well described by a Quasi-Gaussian distribution suggested by Sips. A continuous model, considering a heterogeneous distribution of the carboxylic groups, determined by potentiometric titration experiments, was able to predict equilibrium data at different pH. The metal uptake capacity decreases with the solution pH, suggesting that competition exists between hydrogen ions, present in high concentrations for low pH values, and metal ions. For high ionic strengths, adsorption sites will be surrounded by counter ions and partially lose their charge, which weakens the contribution of the electrostatic binding and decreases the overall adsorption. A small influence of the temperature in the adsorption process was observed. Batch kinetic experiments were also performed, at different pH values, and results were well fitted by a mass transfer model, considering the intraparticle diffusion resistance given by the linear driving force model (LDF). Continuous stirred adsorber (CSTA) and packed bed column configurations were also tested for metal adsorption. The biosorbent regeneration was achieved by contacting it with strong acid (0.1 M HNO3). A mass transfer model was applied with success to describe the biosorption/desorption process in CSTA and packed bed column, considering the equilibrium given by the Langmuir equation/mass action law and film and intraparticle diffusion resistances.  相似文献   

15.
A mathematical model is constructed and solved that could describe the dynamic behavior of the adsorption of a solute of interest in single and stratified columns packed with partially fractal porous adsorbent particles. The results show that a stratified column bed whose length is the same as that of a single column bed, provides larger breakthrough times and a higher dynamic utilization of the adsorptive capacity of the particles than those obtained from the single column bed, and the superior performance of the stratified bed becomes especially more important when the superficial velocity of the flowing fluid stream in the column is increased to accommodate increases in the system throughput. This occurs because the stratified column bed provides larger average external and intraparticle mass transfer and adsorption rates per unit length of packed column. It is also shown that increases in the total number of recursions of the fractal and the ratio of the radii between larger and smaller microspheres that make up the partially fractal particles, increase the intraparticle mass transfer and adsorption rates and lead to larger breakthrough times and dynamic utilization of the adsorptive capacity of the particles. The results of this work indicate that highly efficient adsorption separations could be realized through the use of a stratified column comprised from a practically reasonable number of sections packed with partially fractal porous adsorbent particles having reasonably large (i) total number of recursions of the fractal and (ii) ratio of the radii between larger and smaller microspheres from which the partially fractal particles are made from. It is important to mention here that the physical concepts and modeling approaches presented in this work could be, after a few modifications of the model, applied in studying the dynamic behavior of chemical catalysis and biocatalysis in reactor beds packed with partially fractal porous catalyst particles.  相似文献   

16.
Interactions of Bovin Serum Albumin and Hemoglobin with an hydroxyapatite gel (HA-Ultrogel, Sepracor), have been studied separately in batch experiments. The adsorption isotherms are of the Langmuir type and can be used directly to scale column operations.For adsorption of hemoglobin alone, in column at pH 6.8 (equal to its isoelectric point) we notice that a classical intraparticle transfer model, based on a constant effective diffusion coefficient represents perfectly the symmetrical breakthrough curve. For acid pH values (pH 5.8), Langmuir isotherms of BSA and hemoglobin adsorptions showed a strong curvature, sign of a quite irreversible adsorption and breakthrough curves obtained under these conditions, exhibit a high dissymmetrical shape for both proteins. In that case, a model of diffusion based on the adsorption on two types of independent sites, with two intraparticle transfer coefficients, gives a good representation of the breakthrough for adsorption of both proteins separately.Binary mixtures of these components were prepared and injected in columns packed with the same support. Competitive Langmuir equation, based on the results obtained in monocomponent batch experiments, give a very good fit to our system. The intraparticle transfer in that case seems to be facilitated, and one effective coefficient alone is enough to predict the breakthrough curves obtained. This behaviour may be the result of an increase of the solution ionic strength, and of the smaller irreversibility feature of the adsorption when proteins are in competition.  相似文献   

17.
A mathematical model for an expanded bed column was developed to predict breakthrough curves for inulinase adsorption on Streamline SP ion-exchange adsorbent, using a crude fermentative broth with cells as the feedstock. The kinetics and mass transfer parameters were estimated using the PSO (particle swarm optimization) heuristic algorithm. The parameters were estimated for each expansion degree (ED) using three breakthrough curves at initial inulinase concentrations of 65.6 U mL−1. In sequence, the model parameters for an ED of 2.5 were validated using the breakthrough curve at an initial concentration of 114.4 U mL−1. The applicability of the validated model in process optimization was investigated, using the model as a process simulator and experimental design methodology to optimize the column and process efficiencies. The results demonstrated the usefulness of this methodology for expanded bed adsorption processes.  相似文献   

18.
A batch system was applied to study the adsorption behavior of methylene blue (MB) and rhodamine B (RB) in single and binary component systems on natural zeolite. In the single component systems, the zeolite presents higher adsorption capacity for MB than RB with the maximal adsorption capacity of 7.95×10?5 and 1.26×10?5 mol/g at 55°C for MB and RB, respectively. Kinetic studies indicated that the adsorption followed pseudo‐second‐ order kinetics and could be described by a two‐step diffusion process. For the single component systems, the adsorption isotherm could be fitted by the Langmuir model. In the binary component system, MB and RB exhibit competitive adsorption on the zeolite. The adsorption is approximately reduced to 50% and 60% of single component adsorption systems of MB and RB, respectively at an initial concentration of 6×10?6 mol·L?1 at 25°C. In the binary component system, kinetic and adsorption isotherm studies demonstrate that the experimental data are following pseudo‐second‐order kinetics and Langmuir isotherm and kinetic data are fairly described by a two‐step diffusion model. Effect of solution pH on adsorption of MB and RB in both single and binary component systems was studied and the results were described by electrostatic interactions.  相似文献   

19.
In the frame of the local equilibrium theory of chromatography, design criteria for complete separation of binary mixtures in simulated moving bed (SMB) separations are developed, presented and discussed. These apply to systems, whose retention behavior is characterized by a generalized Langmuir isotherm. By allowing for negative terms in the denominator of the classical Langmuir isotherm, this newly introduced adsorption model captures a broad class of competitive or synergistic adsorption, including anti-Langmuir behavior for both adsorbates, and mixed cases where one species behaves in a Lagmuirian and the other in an anti-Langmuirian manner. By extending classical equilibrium theory results for the binary Langmuir isotherm, and by generalizing the approach followed earlier to derive SMB design criteria for the binary and multi-component Langmuir isotherm, exact algebraic equations for the boundary of the complete separation region in the operating parameter space are derived for all possible generalized Langmuir isotherm. The effect of changing feed composition on the shape of the complete separation region and on the position of the optimal operating point is analyzed and discussed.  相似文献   

20.
Ionic liquids (ILs)-bonded silica adsorbents were prepared by chemical modification of the silica surface using N-alkylimidazolium-based ILs with Cl?, BF4 ?, PF6 ? or NO3 ? anion, and applied to selective separation of the model mixture of luteolin and aloe-emodin. Among the investigated ILs-bonded silica materials, the silica grafted with N-octyllimidazolium hexafluorophosphate ([C8mim]PF6@SiO2) exhibited higher adsorption capacity and selectivity of luteolin from the model mixed solution of luteolin and aloe-emodin. The isotherm data of luteolin on [C8mim]PF6@SiO2 correlated better to the Freundlich model than the Langmuir model, and the calculated thermodynamic parameters indicated that the adsorption of luteolin was spontaneous and exothermic. The dynamic adsorption and elution experiments demonstrated that the high adsorption capacity and good desorption efficiency of luteolin on fixed bed packed with the [C8mim]PF6@SiO2. Moreover, the results from batch adsorption and dynamic adsorption showed well selective separation towards the model mixture of luteolin and aloe-emodin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号