首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let X1,X2,... be a sequence of i.i.d. random variables and let X(1),X(2),... be the associatedrecord value sequence. We focus on the asymptotic distributions of sums of records, Tn=∑nk=1X(k), forX1 ∈ LN(γ). In this case, we find that 2 is a strange point for parameter γ. When γ> 2, Tn is asymptoticallynormal, while for 2 >γ> 1, we prove that Tn cannot converge in distribution to any non-degenerate lawthrough common centralizing and normalizing and log Tn is asymptotically normal.  相似文献   

2.
Let X 1, X 2,... be independent identically distributed random variables with distribution function F, S 0 = 0, S n = X 1 + ⋯ + X n , and n = max1⩽kn S k . We obtain large-deviation theorems for S n and n under the condition 1 − F(x) = P{X 1x} = el(x), l(x) = x α L(x), α ∈ (0, 1), where L(x) is a slowly varying function as x → ∞. __________ Translated from Lietuvos Matematikos Rinkinys, Vol. 45, No. 4, pp. 447–456, October–December, 2005.  相似文献   

3.
We study the asymptotic behavior of a set of random vectors ξi, i = 1,..., m, whose coordinates are independent and identically distributed in a space of infinitely increasing dimension. We investigate the asymptotics of the distribution of the random vectors, the consistency of the sets M m(n) = ξ1,..., ξm and X nλ = x ∈ X n: ρ(x) ≤ λn, and the mutual location of pairs of vectors. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 12, pp. 1706–1711, December, 1998.  相似文献   

4.
Conditions are obtained for (*)E|S T |γ<∞, γ>2 whereT is a stopping time and {S n=∑ 1 n ,X j n ,n⩾1} is a martingale and these ensure when (**)X n ,n≥1 are independent, mean zero random variables that (*) holds wheneverET γ/2<∞, sup n≥1 E|X n |γ<∞. This, in turn, is applied to obtain conditions for the validity ofE|S k,T |γ<∞ and of the second moment equationES k,T 2 =σ 2 EΣ j=k T S k−1,j−1 2 where and {X n , n≥1} satisfies (**) and ,n≥1. The latter is utilized to elicit information about a moment of a stopping rule. It is also shown for i.i.d. {X n , n≥1} withEX=0,EX 2=1 that the a.s. limit set of {(n log logn)k/2 S k,n ,n≥k} is [0,2 k/2/k!] or [−2 k/2/k!] according ask is even or odd and this can readily be reformulated in terms of the corresponding (degenerate kernel)U-statistic .  相似文献   

5.
Let {Xn,n ≥ 1} be a strictly stationary LNQD (LPQD) sequence of positive random variables with EX1 = μ 〉 0, and VarX1 = σ^2 〈 ∞. Denote by Sn = ∑i=1^n Xi and γ = σ/μ the coefficients of variation. In this paper, under some suitable conditions, we show that a general law of precise asymptotics for products of sums holds. It can describe the relations among the boundary function, weighted function, convergence rate and limit value in the study of complete convergence.  相似文献   

6.
Let X 1, X 2, … be a sequence of independent identically distributed real-valued random variables, S n be the nth partial sum process S n (t) ≔ X 1 + ⋯ X tn, t ∈ [0, 1], W be the standard Wiener process on [0, 1], and 2 < p < ∞. It is proved that n −1/2 S n converges in law to σW as n → ∞ in p-variation norm if and only if EX 1 = 0 and σ 2 = EX 12 < ∞. The result is applied to test the stability of a regression model. The research was partially supported by the Lithuanian State Science and Studies Foundation, grant No. T-21/07  相似文献   

7.
Fix integers n, x, k such that n≥3, k>0, x≥4, (n, x)≠(3, 4) and k(n+1)<( n n+x ). Here we prove that the order x Veronese embedding ofP n is not weakly (k−1)-defective, i.e. for a general SP n such that #(S) = k+1 the projective space | I 2S (x)| of all degree t hypersurfaces ofP n singular at each point of S has dimension ( n /n+x )−1− k(n+1) (proved by Alexander and Hirschowitz) and a general F∈| I 2S (x)| has an ordinary double point at each PS and Sing (F)=S. The author was partially supported by MIUR and GNSAGA of INdAM (Italy).  相似文献   

8.
For a minimal distal flow (X, T) and a positive integern, let be the largest distal factor of ordern. The existence of a denseG δ subset ω ofX is shown, such that forx ∈ ω the orbit closure of (x,x,...,x) ∈ X n+1 under τ =T ×T 2 ... ×T n+1 is π-saturated. In fact, an analogous statement for a general minimal flow is proved in terms of its PI-tower. On the way we get some topological “ergodic” decomposition theorems.  相似文献   

9.
Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved.  相似文献   

10.
Let P(n) be the set of all partitions of a natural number n. In the representation theory of symmetric groups, for every partition α ∈ P(n), the partition h(α) ∈ P(n) is defined so as to produce a certain set of zeros in the character table for Sn. Previously, the analog f(α) of h(α) was obtained pointing out an extra set of zeros in the table mentioned. Namely, h(α) is greatest (under the lexicographic ordering ≤) of the partitions β of n such that χα(gβ) ≠ 0, and f(α) is greatest of the partitions γ of n that are opposite in sign to h(α) and are such that χα(gγ) ≠ 0, where χα is an irreducible character of Sn, indexed by α, and gβ is an element in the conjugacy class of Sn, indexed by β. For α ∈ P(n), under some natural restrictions, here, we construct new partitions h′(α) and f′(α) of n possessing the following properties. (A) Let α ∈ P(n) and n ⩾ 3. Then h′(α) is identical is sign to h(α), χα(gh′(α)) ≠ 0, but χα(gγ) = 0 for all γ ∈ P(n) such that the sign of γ coincides with one of h(α), and h′(α) < γ < h(α). (B) Let α ∈ P(n), α ≠ α′, and n ⩾ 4. Then f′(α) is identical in sign to f(α), χα(gf′(α)) ≠ 0, but χα(gγ) = 0 for all γ ∈ P(n) such that the sign of γ coincides with one of f(α), and f′(α) < γ < f(α). The results obtained are then applied to study pairs of semiproportional irreducible characters in An. Supported by RFBR grant No. 04-01-00463. __________ Translated from Algebra i Logika, Vol. 44, No. 6, pp. 643–663, November–December, 2005.  相似文献   

11.
In the case of Zd (d ≥ 2)-the positive d-dimensional lattice points with partial ordering ≤, {Xk,k ∈ Zd } i.i.d. random variables with mean 0, Sn = ∑k≤nXk and Vn2 = ∑j≤nX2j, the precise asymptotics for ∑n1/|n|(log|n|)dP(|Sn/vn|≥ ε√loglog|n|) and ∑n(logn|)δ/|n|(log|n|)d-1 P(|Sn/Vn| ≥ ε√log n), as ε ↘ 0, is established.  相似文献   

12.
Let {Xn,-∞< n <∞} be a sequence of independent identically distributed random variables with EX1 = 0, EX12 = 1 and let Sn =∑k=1∞Xk, and Tn = Tn(X1,…,Xn) be a random function such that Tn = ASn Rn, where supn E|Rn| <∞and Rn = o(n~(1/2)) a.s., or Rn = O(n1/2-2γ) a.s., 0 <γ< 1/8. In this paper, we prove the almost sure central limit theorem (ASCLT) and the function-typed almost sure central limit theorem (FASCLT) for the random function Tn. As a consequence, it can be shown that ASCLT and FASCLT also hold for U-statistics, Von-Mises statistics, linear processes, moving average processes, error variance estimates in linear models, power sums, product-limit estimators of a continuous distribution, product-limit estimators of a quantile function, etc.  相似文献   

13.
 Let G be a graph with n vertices, and denote as γ(G) (as θ(G)) the cardinality of a minimum edge cover (of a minimum clique cover) of G. Let E (let C) be the edge-vertex (the clique-vertex) incidence matrix of G; write then P(E)={x∈ℜ n :Ex1,x0}, P(C)={x∈ℜ n :Cx1,x0}, α E (G)=max{1 T x subject to xP(E)}, and α C (G)= max{1 T x subject to xP(C)}. In this paper we prove that if α E (G)=α C (G), then γ(G)=θ(G). Received: May 20, 1998?Final version received: April 12, 1999  相似文献   

14.
LetX be a probability space and letf: X n → {0, 1} be a measurable map. Define the influence of thek-th variable onf, denoted byI f (k), as follows: Foru=(u 1,u 2,…,u n−1) ∈X n−1 consider the setl k (u)={(u 1,u 2,...,u k−1,t,u k ,…,u n−1):tX}. More generally, forS a subset of [n]={1,...,n} let the influence ofS onf, denoted byI f (S), be the probability that assigning values to the variables not inS at random, the value off is undetermined. Theorem 1:There is an absolute constant c 1 so that for every function f: X n → {0, 1},with Pr(f −1(1))=p≤1/2,there is a variable k so that Theorem 2:For every f: X n → {0, 1},with Prob(f=1)=1/2, and every ε>0,there is S ⊂ [n], |S|=c 2(ε)n/logn so that I f (S)≥1−ε. These extend previous results by Kahn, Kalai and Linial for Boolean functions, i.e., the caseX={0, 1}. Work supported in part by grants from the Binational Israel-US Science Foundation and the Israeli Academy of Science.  相似文献   

15.
LetW be an algebraically closed filed of characteristic zero, letK be an algebraically closed field of characteristic zero, complete for an ultrametric absolute value, and letA(K) (resp. ℳ(K)) be the set of entire (resp. meromorphic) functions inK. For everyn≥7, we show that the setS n(b) of zeros of the polynomialx nb (b≠0) is such that, iff, gW[x] or iff, gA(K), satisfyf −1(S n(b))=g −1(S n(b)), thenf n=g n. For everyn≥14, we show thatS n(b) is such that iff, gW({tx}) or iff, g ∈ ℳ(K) satisfyf −1(S n(b))=g −1(S n(b)), then eitherf n=g n, orfg is a constant. Analogous properties are true for complex entire and meromorphic functions withn≥8 andn≥15, respectively. For everyn≥9, we show that the setY n(c) of zeros of the polynomial , (withc≠0 and 1) is an ursim ofn points forW[x], and forA(K). For everyn≥16, we show thatY n(c) is an ursim ofn points forW(x), and for ℳ(K). We follow a method based on thep-adic Nevanlinna Theory and use certain improvement of a lemma obtained by Frank and Reinders.  相似文献   

16.
It is shown that for every non-reflexive Banach spaceX withX **/X reflexive there exists a uniformly bounded sequence of projections {P n } n=1 whose ranges are uniformly isomorphic to {l p n } n = 1 either forp=1, orp=2 or forp=∞. The proof uses knowledge of the transfinite dualX ω, ESA Schauder decompositions and proof of a similar statement for spaces with an unconditional basis due to Tzafriri.  相似文献   

17.
Let {X, X1, X2,...} be a strictly stationaryφ-mixing sequence which satisfies EX = 0,EX^2(log2{X})^2〈∞and φ(n)=O(1/log n)^Tfor some T〉2.Let Sn=∑k=1^nXk and an=O(√n/(log2n)^γ for some γ〉1/2.We prove that limε→√2√ε^2-2∑n=3^∞1/nP(|Sn|≥ε√ESn^2log2n+an)=√2.The results of Gut and Spataru (2000) are special cases of ours.  相似文献   

18.
Let {X n, n ≥1} be a sequence of standard Gaussian random vectors in ℝ d ,d ≥ 2. In this paper we derive lower and upper bounds for the tail probabilityP{X n >t n } witht n ∈ ℝ d some threshold. We improve for instance bounds on Mills ratio obtained by Savage (1962,J. Res. Nat. Bur. Standards Sect. B,66, 93–96). Furthermore, we prove exact asymptotics under fairly general conditions on bothX n andt n , as ‖t n ‖→∞ where the correlation matrix Σ n ofX n may also depend onn.  相似文献   

19.
Let {X i } i=1 be a standardized stationary Gaussian sequence with covariance function r(n) = EX 1 X n+1, S n = Σ i=1 n X i , and $\bar X_n = \tfrac{{S_n }} {n} $\bar X_n = \tfrac{{S_n }} {n} . And let N n be the point process formed by the exceedances of random level $(\tfrac{x} {{\sqrt {2\log n} }} + \sqrt {2\log n} - \tfrac{{\log (4\pi \log n)}} {{2\sqrt {2\log n} }})\sqrt {1 - r(n)} + \bar X_n $(\tfrac{x} {{\sqrt {2\log n} }} + \sqrt {2\log n} - \tfrac{{\log (4\pi \log n)}} {{2\sqrt {2\log n} }})\sqrt {1 - r(n)} + \bar X_n by X 1,X 2,…, X n . Under some mild conditions, N n and S n are asymptotically independent, and N n converges weakly to a Poisson process on (0,1].  相似文献   

20.
In this paper we extend and improve some results of the large deviation for random sums of random variables. Let {Xn;n 〉 1} be a sequence of non-negative, independent and identically distributed random variables with common heavy-tailed distribution function F and finite mean μ ∈R^+, {N(n); n ≥0} be a sequence of negative binomial distributed random variables with a parameter p C (0, 1), n ≥ 0, let {M(n); n ≥ 0} be a Poisson process with intensity λ 〉 0. Suppose {N(n); n ≥ 0}, {Xn; n≥1} and {M(n); n ≥ 0} are mutually independent. Write S(n) =N(n)∑i=1 Xi-cM(n).Under the assumption F ∈ C, we prove some large deviation results. These results can be applied to certain problems in insurance and finance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号