首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this work, the effects of slip velocity on the flow and heat transfer for an electrically conducting micropolar fluid over a permeable stretching surface with variable heat flux in the presence of heat generation (absorption) and a transverse magnetic field are investigated. The governing partial differential equations describing the problem are converted to a system of non-linear ordinary differential equations by using the similarity transformation, which is solved numerically using the Chebyshev spectral method. The effects of the slip parameter on the flow, micro-rotation and temperature profiles as well as on the local skin-friction coefficient, the wall couple stress and the local Nusselt number are presented graphically. The numerical results of the local skin-friction coefficient, the wall couple stress and the local Nusselt number are given in a tabular form and discussed.  相似文献   

2.
An analysis is presented to study the effects of viscous dissipation and Joule heating on MHD-free convection flow past a semi-infinite vertical flat plate in the presence of the combined effect of Hall and ion-slip currents for the case of power-law variation of the wall temperature. The fluid is permeated by a strong transverse magnetic field imposed perpendicularly to the plate on the assumption of a small magnetic Reynolds number. The governing differential equations are transformed by introducing proper non-similarity variables and solved numerically. The effects of various parameters on the velocity and temperature profiles as well as the local wall shear stresses and the local Nusselt number are presented graphically and in tabular form. It is found that the magnetic field acts as a retarding force on the tangential flow but has a propelling effect on the induced lateral flow. The skin-friction factor for the tangential flow and the local Nusselt number decrease but the skin-friction factor for the lateral flow increases as the magnetic field increases. The skin-friction factor for the tangential and lateral flows are increased while the local Nusselt number is decreased if the effect of viscous dissipation, Joule heating and heat generation are considered. The opposite trend was observed as the temperature power coefficient n is increased. Also, the skin-friction factor for the tangential flow and the local Nusselt number are increased due to the Hall and ion-slip currents, whereas the skin-friction factor for the tangential flow increases when Hall values increase to one and decreases for values of Hall greater than one, but reduces by rising ion-slip values.  相似文献   

3.
The combined effect of viscous dissipation and joule heating on steady Magnetohydrodynamic heat and mass transfer flow of viscous incompressible fluid over an inclined radiate isothermal permeable surface in the presence of thermophoresis is studied. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as the local skin-friction coefficient, the local Nusselt number and the local Stanton number are displayed graphically for various physical parameters. Comparisons with previously published work are performed and the results are found to be in very good agreement. Results show that rate of heat transfer is sensitive for increasing angle of inclination parameter for the case of fluid injection and it decreases with the increase of magnetic field parameter and Eckert number.  相似文献   

4.
Non-Darcy flow and heat characteristics over a stretching sheet is presented here by taking into account of Ohmic dissipation and thermal radiation effects. The governing fundamental equations are first transformed into system of ordinary differential equations using self-similarity transformation and they are then solved numerically by using the fifth-order Runge–Kutta–Fehlberg method with shooting technique for some values of the physical parameters. Important features of the flow and heat transfer characteristic for different values of thermal radiation, magnetic and electric fields are analyzed and discussed. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field and electric field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with radiation parameters are reported graphically for various parametric conditions to show interesting aspects of the numerical solution.  相似文献   

5.
This paper deals with the study of the effects of first order chemical reaction and radiation on an unsteady MHD flow of an incompressible viscous electrically conducting fluid past an accelerated infinite vertical plate with variable temperature and mass transfer. The resulting approximate dimensionless system of governing partial differential equations are integrated in closed form by the Laplace transform technique A uniform magnetic field is assumed to be applied transversely to the direction of the flow. Rosseland model of radiation has been chosen in the investigation, the expressions for the velocity field, temperature field and concentration field and skin-friction in the direction of the flow, coefficient of heat transfer and mass flux at the plate have been obtained in non-dimensional form and these are illustrated graphically for various physical parameters involved in the study. Investigation reveals that the fluid velocity is decelerated in the region adjacent to the plate, due to the effect of first order chemical reaction and the rate of heat transfer (from plate to the fluid) decreases due to the absorption of thermal radiation. The results obtained in this work are consistent with physical situation of the problem.  相似文献   

6.
The effects of dependence on temperature of the viscosity and electric conductivity, Reynolds number and particle concentration on the unsteady MHD flow and heat transfer of a dusty, electrically conducting fluid between parallel plates in the presence of an external uniform magnetic field have been investigated using the network simulation method (NSM) and the electric circuit simulation program Pspice. The fluid is acted upon by a constant pressure gradient and an external uniform magnetic field perpendicular is applied to the plates. We solved the steady-state and transient problems of flow and heat transfer for both the fluid and dust particles. With this method, only discretization of the spatial co-ordinates is necessary, while time remains as a real continuous variable. Velocity and temperature are studied for different values of the viscosity and magnetic field parameters and for different particle concentration and upper wall velocity.  相似文献   

7.
This paper analyzes the flow and heat and mass transfer characteristics of the free convection on a vertical plate with variable wall temperature and concentration in a doubly stratified micropolar fluid. A uniform magnetic field is applied normal to the plate. The governing non-linear partial differential equations are transformed into a system of coupled non-linear ordinary differential equations using similarity transformations and then solved numerically using the Keller-box method. The numerical results are compared and found to be in good agreement with previously published results as special cases of the present investigation. The non-dimensional velocity, microrotation, temperature and concentration are presented graphically for various values of magnetic parameter, coupling number, thermal and solutal stratification parameters. In addition, the Nusselt number, the Sherwood number, the skin-friction coefficient, and the wall couple stress are shown in a tabular form.  相似文献   

8.
The present model concentrates on three-dimensional steady incompressible flow of an Eyring-Powell nanofluid past an exponentially stretching sheet with magnetic field. The Cattaneo–Christov heat flux with convective boundary condition is accounted for. Shooting method is the instrumental for obtaining numerical solution of the transformed-converted system of the mathematical models. Behavior of the determining thermo-physical parameters on the velocity, temperature, skin friction, heat transfer rate, and finally isotherms are considered. The major relevant outcomes of the current investigation are that increment in Eyring-Powell parameter uplifts flow velocity, while that peters out the fluid temperature. Enhanced values of the mixed convection parameter weakened the skin friction coefficient while it slightly strengthened the rate of heat transfer.  相似文献   

9.
This work is focused on the study of unsteady magnetohydrodynamics boundary-layer flow and heat transfer for a viscous laminar incompressible electrically conducting and rotating fluid due to a stretching surface embedded in a saturated porous medium with a temperature-dependent viscosity in the presence of a magnetic field and thermal radiation effects. The fluid viscosity is assumed to vary as an inverse linear function of temperature. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. With appropriate transformations, the unsteady MHD boundary layer equations are reduced to local nonsimilarity equations. Numerical solutions of these equations are obtained by using the Runge–Kutta integration scheme as well as the local nonsimilarity method with second order truncation. Comparisons with previously published work have been conducted and the results are found to be in excellent agreement. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity in primary and secondary flows as well as the local skin-friction coefficients and the local Nusselt number are illustrated graphically to show interesting features of Darcy number, viscosity-variation, magnetic field, rotation of the fluid, and conduction radiation parameters.  相似文献   

10.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

11.
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.  相似文献   

12.
An analysis has been carried out to study the momentum and heat transfer characteristics in an incompressible electrically conducting non-Newtonian boundary layer flow of a viscoelastic fluid over a stretching sheet. The partial differential equations governing the flow and heat transfer characteristics are converted into highly non-linear coupled ordinary differential equations by similarity transformations. The effect of variable fluid viscosity, Magnetic parameter, Prandtl number, variable thermal conductivity, heat source/sink parameter and thermal radiation parameter are analyzed for velocity, temperature fields, and wall temperature gradient. The resultant coupled highly non-linear ordinary differential equations are solved numerically by employing a shooting technique with fourth order Runge–Kutta integration scheme. The fluid viscosity and thermal conductivity, respectively, assumed to vary as an inverse and linear function of temperature. The analysis reveals that the wall temperature profile decreases significantly due to increase in magnetic field parameter. Further, it is noticed that the skin friction of the sheet decreases due to increase in the Magnetic parameter of the flow characteristics.  相似文献   

13.
An analysis has been carried out to study heat transfer characteristics of an incompressible Newtonian electrically conducting and heat generating/absorbing fluid having temperature-dependent viscosity over a non-isothermal wedge in the presence of thermal radiation. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The wedge surface is assumed to be permeable so as to allow for possible wall suction or injection. The effects of viscous dissipation, Joule heating, stress work and thermal radiation are included in the model. The governing differential equations are derived and transformed using a non-similarity transformation. The transformed equations are solved numerically by applying a fifth-order Runge-Kutta-Fehlberg scheme with shooting technique. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic field and radiation parameters are presented graphically and in tabulated form to elucidate the influence of the various physical parameters.  相似文献   

14.
This paper presents the study of momentum and heat transfer characteristics in a hydromagnetic flow of viscoelastic liquid over a stretching sheet with non-uniform heat source, where the flow is generated due to a linear stretching of the sheet and influenced by uniform magnetic field applied vertically. Here an analysis has been carried out to study the effect of magnetic field on the visco-elastic liquid flow and heat transfer over a stretching sheet with non-uniform heat source. The non-linear boundary layer equation for momentum is converted into ordinary differential equation by means of similarity transformation and is solved exactly. Heat transfer differential equation is also solved analytically. The effect of magnetic field on velocity, skin friction and temperature profiles are presented graphically and discussed.  相似文献   

15.
Laminar free convection flow of a second order fluid past a hot vertical plate with varying wall temperature has been studied in this paper. Exact solutions for the velocity and temperature fields have been obtained. The effects of elastic coefficient on the velocity and temperature fields, rate of heat transfer and the skin-friction have been studied.  相似文献   

16.
Hydromagnetic heat transfer by mixed convection along an inclined continuously stretching surface, with power-law variation in the surface temperature or heat flux, in the presence of Hall current and internal heat generation/absorption has been studied. The surface is considered to be permeable to allow fluid suction or blowing, and stretching with a surface velocity varied according to a power-law. Two cases of the temperature boundary conditions were considered at the surface. The governing equations have been transformed into non-similar partial differential equations which have been integrated by the forth-order Runge–Kutta method. The effect of Hall parameter, magnetic parameter, dimensionless blowing/suction parameter, space and temperature dependent internal heat generation/absorption parameters and buoyancy force parameters on the temperature, primary and secondary flow velocity have been studied parametrically. All parameters involved in the problem affect the flow and thermal distributions except the temperature-dependent internal heat generation/absorption in the case of prescribed heat flux (PHF). Numerical values of the local skin-friction and the local Nusselt numbers for various parametric conditions have been tabulated.  相似文献   

17.
The problem of steady, laminar, hydromagnetic, simultaneous heat and mass transfer by laminar flow of a Newtonian, viscous, electrically conducting and heat generating/absorbing fluid over a continuously stretching surface in the presence of the combined effect of Hall currents and mass diffusion of chemical species with first and higher order reactions is investigated. The fluid is permeated by a strong transverse magnetic field imposed perpendicularly to the plate on the assumption of a small magnetic Reynolds number. Certain transformations are employed to transform the governing differential equations to a local similarity form which are solved numerically. Comparisons with previously published work have been conducted and the results are found to be in good agreement. A parametric study is performed to illustrate the influence of the magnetic field parameter, Hall parameter, the coefficients of space-dependent and temperature-dependent internal heat generation/absorption, the chemical reaction parameter and order of reaction on the fluid velocity, temperature and concentration distributions. Numerical data for the local skin-friction coefficient, the local Nusselt number and the local Sherwood number have been tabulated for various values of parametric conditions.  相似文献   

18.
An analytical study for the problem of unsteady mixed convection with thermal radiation and first-order chemical reaction on magnetohydrodynamics boundary layer flow of viscous, electrically conducting fluid past a vertical permeable plate has been presented. Slip boundary condition is applied at the porous interface. The classical model is used for studying the effect of radiation for optically thin media. The non-linear coupled partial differential equations are solved by perturbation technique. The results obtained show that the velocity, temperature and concentration fields are appreciably influenced by the presence of chemical reaction, thermal stratification and magnetic field. It is observed that the effect of thermal radiation and magnetic field decreases the velocity, temperature and concentration profiles in the boundary layer. Also, the effects of the various parameters on the skin-friction coefficient and the rate of heat transfer at the surface are discussed.  相似文献   

19.
An analysis has been carried out to study the flow and heat transfer characteristics for MHD viscoelastic boundary layer flow over an impermeable stretching sheet with space and temperature dependent internal heat generation/absorption (non-uniform heat source/sink), viscous dissipation, thermal radiation and magnetic field due to frictional heating. The flow is generated due to linear stretching of the sheet and influenced by uniform magnetic field, which is applied vertically in the flow region. The governing partial differential equations for the flow and heat transfer are transformed into ordinary differential equations by a suitable similarity transformation. The governing equations with the appropriate conditions are solved exactly. The effects of viscoelastic parameter and magnetic parameter on skin friction and the effects of viscous dissipation, non-uniform heat source/sink and the thermal radiation on heat transfer characteristics for two general cases namely, the prescribed surface temperature (PST) case and the prescribed wall heat flux (PHF) case are presented graphically and discussed. The numerical results for the wall temperature gradient (the Nusselt number) are presented in tables and are discussed.  相似文献   

20.
This article investigates the natural convection flow of viscous incompressible fluid in a channel formed by two infinite vertical parallel plates. Fully developed laminar flow is considered in a vertical channel with steady-periodic temperature regime on the boundaries. The effect of internal heating by viscous dissipation is taken into consideration. Separating the velocity and temperature fields into steady and periodic parts, the resulting second order ordinary differential equations are solved to obtain the expressions for velocity, and temperature. The amplitudes and phases of temperature and velocity are also obtained as well as the rate of heat transfer and the skin-friction on the plates. In presence of viscous dissipation, fluids of relatively small Prandtl number has higher temperature than the channel plates and as such, heat is being transferred from the fluid to the plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号