首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Non》2000,270(1-3):137-146
The Ge25Ga5Se70 and Ge30Ga5Se65 pure and Pr3+-doped glasses were prepared by direct synthesis from elements and PrCl3. It was found that up to 1 mol% PrCl3 can be introduced in the Ge25Ga5Se70 and Ge30Ga5Se65 glasses. Both types of glasses with overstoichiometric and substoichiometric content of Se were homogeneous and of black color. The optical energy gap is Eoptg=2.10 eV, and the glass transition temperature is Tg=543 K for Ge25Ga5Se70 and Tg=633 K for Ge30Ga5Se65. The long-wavelength absorption edge is near 14 μm and it corresponds to multiphonon processes. Doping by Pr3+ ions creates absorption bands in transmission spectra, which can be assigned to the electron transitions from the ground 3H4 level to the higher energy levels of Pr3+ ions 3H5, 3H6, 3F2, 3F3 and 3F4, respectively. By excitation with YAG:Nd laser line (1064 nm), two intense luminescence bands (1343 and 1601 nm) were excited. The first band can be ascribed to electron transitions between 1G4 and 3H5 energy levels of Pr3+ ions. Full width at half of maximum (FWHM) of the intensity of luminescence was found to be 70 nm for (Ge25Ga5Se70)1 − x(PrCl3)x and (Ge30Ga5Se65)1 − x(PrCl3)x glasses. The FWHM in selenide glasses is lower than in halide and sulphide glasses. The second luminescence band (1601 nm) can be probably ascribed to the transitions between 3F3 and 3H4 energy levels of Pr3+ ions. The absorption and luminescence spectra of Pr3+ ions in studied glasses are slightly influenced by stoichiometry of glassy matrix. The Raman spectra of studied glasses were deconvoluted and assignment of Raman bands to individual vibration modes of basic structural units was suggested. The structure of studied glasses is mainly formed by corner-sharing and edge-sharing GeSe4 tetrahedra. The vibration modes of Ga-containing structural units were not found, they are apparently overlapping with Ge-containing structural units due to small difference between atomic weights of Ge and Ga. In the glasses with substoichiometry of Se, the Ge–Ge bonds of Ge2Se6 structural units were found. In Se-rich glasses the Se–Se vibration modes were found. In all studied glasses also ‘wrong' bonds between like atoms were found in small amounts. Maximum phonon energy of studied glasses is 320 cm−1.  相似文献   

2.
Raman spectra of ternary sodium aluminosphosphate glasses indicate that for glasses with Al2O3/P2O5<0.63, the glass network is mainly built up of (PO3)nn- chains and rings or different kinds of phosphate groups and AlO4 tetrahedra; for glasses with Al2O3/P2O5>0.63, the glass network is mainly built up of AlPO4 groups.  相似文献   

3.
Raman spectra have been measured for ZnCl2---ZnX2 and ZnCl2---KX (X = Br, I) glasses to investigate the structure of the glasses with varying composition. The assignment of each band was made, and the change of the spectra with composition was explained in terms of the bridging and non-bridging states of halide ions and the change of the tetrahedral units, ZnXnCl4−n2− (n = 0–4), formed in the glasses. As the content of ZnX2 in ZnCl2---ZnX2 glasses increases (20 → 80 mol%), the peak frequency of the Zn---Cl stretching mode increases (238 → 248 cm−1 in X = I glasses, 238 → 259 cm−1 in X = Br glasses) while the Zn---I and Zn---Br stretching frequencies decrease (173 → 120 cm−1 for Zn---I, 196 → 157 cm−1 for Zn---Br). The decrease of the Zn---I and Zn---Br band frequencies was attributed to the increase of the number n of the ZnXnCl4−n2− tetrahedra. The increase of the Zn---Cl frequency suggests the existence of the bonding state of Cl ions which is intermediate between the bridging and the non-bridging states. In ZnCl2---KX glasses, the Zn---Clnon-bridging band at about 300 cm−1 was observed in addition to the bands observed in ZnCl2---ZnX2 glasses. The addition of KX produces non-bridging anions while the tetrahedral units, ZnXnCl4−n2− are also formed.  相似文献   

4.
In this paper, we mainly study the effects of anion or anion group additives (such as the monovalent anions OH, Cl or NO3, the divalent anion SO4, and the trivalent anion PO43−, respectively) in a salt bath of KNO3 on glass strengthening. The Na2O---Al2O3---SiO2 system is selected to be the base glass.  相似文献   

5.
K. Hirao  T. Komatsu  N. Soga 《Journal of Non》1980,40(1-3):315-323
Mössbauer absorption measurements have been made at room temperature on 57Fe in iron sodium silicate glasses containing 3–15 mol% Fe2O3 and various iron alkali silicate crystals in order to study the state of iron in these glasses. The spectra of all the glasses gave one doublet with a quadrupole splitting varying from 0.73–0.78 mm s−1, while those of Na2O · Fe2O3 · 4 SiO2 and 5 Na2O · Fe2O3 · 8 SiO2 crystals showed much smaller quadrupole splitting, 0.28 mm s−1 and 0.10 mm s−1, respectively, and an asymmetrical doublet of much narrower linewidth. When sodium was replaced by other alkali metals of larger size, such as K and Cs, in MFeSi2O6 and MFeSi3O8 crystals, the quadrupole splitting became wider and approached to 0.73 mm s−1. Such a variation was not observed for glasses. These results suggest that a larger number of non-identical sites exist in iron sodium silicate glasses than in the corresponding crystals.  相似文献   

6.
Thermally stimulated luminescence (TSL) and infrared (IR) spectroscopy were measured in plasma grown Si1−xGexO2 (x=0, 0.08, 0.15, 0.25, 0.5) with different thicknesses (12–40 nm). A comparison with the TSL properties of thermally grown SiO2 and GeO2 was also performed. A main IR absorption structure was detected, due to the superposition of the peaks related to the asymmetric O stretching modes of (i) Si–O–Si (at ≈1060 cm−1) and (ii) Si–O–Ge (at 1001 cm−1). Another peak at ≈860 cm−1 was observed only for Ge concentrations, x>0.15, corresponding to the asymmetric O stretching mode in Ge–O–Ge bonds. A TSL peak was observed at 70°C, and a smaller structure at around 200°C. The 70°C peak was more intense in all Ge rich layers than in plasma grown SiO2. Based on the thickness dependence of the signal intensity we propose that at Ge concentrations 0.25x0.5 TSL active defects are localised at interfacial regions (oxide/semiconductor, Ge poor/Ge rich internal interface, oxide external surface/atmosphere). Based on similarities between TSL glow curves in plasma grown Si1−xGexO2, thermally grown GeO2 and SiO2 we propose that oxygen vacancy related defects are trapping states in Si1−xGexO2 and GeO2.  相似文献   

7.
J. Gtz 《Journal of Non》1976,20(3):413-425
The type and the amount of silicate groupings existing in glassy and crystalline 2PbO·SiO2 have been determined by direct chemical methods: paper chromatography, trimethylsilylation combined with gas-liquid partition chromatography and by the molybdate method. The results obtained by these three different methods are in good agreement and demonstrate, that glassy 2PbO·SiO2 and each of the three main crystalline polymorphs are characterized by its own specific silicate anion distribution: the distribution in vitreous 2PbO·SiO2 is of a polyanionic nature; in T---Pb2SiO4 dimetic groups [Si2O7]6− prevail; M1---Pb2SiO4 contains predominantly [Si4O12]8− rings and H---Pb2SiO4 is a typical polysilicate with chain anions [SiO32−]n. The results fit a structural model according to which glass is a random array of discrete polyatomic groupings; the gradual transition from the glassy state to the stablest crystalline structure is connected with degradation and polymerization of silicate anions.  相似文献   

8.
New multicomponent PbF2–InF3–GaF3 bulk glasses have been investigated. They show lower phonon energy (540 cm−1) in comparison with 580 cm−1 for ZBLAN. Large PbF2 concentration provided glasses with high refractive index up to 1.582 and the viscosity curves revealed an excellent thermal compatibility with ZBLAYN glass. A multimode fiber with a numerical aperture of 0.51, a loss of 0.85 dB/m at 1.3 μm was fabricated using the rotational casting method.  相似文献   

9.
A series of titania-silica glasses with 0–9% TiO2 were fabricated using a sol/gel process. The sol was prepared by dispersing colloidal silica fume in an aqueous solution of titania which was synthesized through the acid-catalyzed hydrolysis of titanium isopropoxide. The sols gelled in 2–4 days, and then were dried for 6–8 days. The dry gels were sintered at 1450–1500°C to produce clear, dense, microstructure-free glasses. The gels underwent a total shrinkage of 50% to yield glass rods about 50 mm long and 5 mm in diameter, or glass discs about 4 cm in diameter and 5 mm thick. The drying step was most critical in the production of crack-free specimens.

In the gel, the transmission electron microscope (TEM) revealed the presence of 1–5 nm rutile microcrystallites uniformly distributed within a network of colloidal silica particles. After sintering to 1450–1500°C, though, a dense, transparent, microstructure-free glass was created. Fourier transform infrared spectroscopy (FTIR) verified the formation of an amorphous solid-solution of titania and silica after sintering.

The thermal expansion of the glasses was measured using a differential dilatometer. The average linear coefficients of thermal expansion (CTE @ 25–675°C) varied between +5 × 10−7 and −0.2 × 10−7°C−1 in the range 0 to 9% TiO2. The glass with 7.2% TiO2 exhibited a zero thermal expansion coefficient at 150–210°C. The hysteresis in CTE on heating and cooling was of the order of 0.01–0.02 ppm.  相似文献   


10.
Ag+/Na+ ion-exchanged R2O–Al2O3–SiO2 glasses with uniform concentration profile of Ag+ and Na+ were prepared by heat treatment in molten silver salt followed by holding at the same temperature in an ambient atmosphere. Their glass transition temperature (Tg) and thermal expansion coefficient (TEC) were measured and structures were investigated using 29Si-MAS NMR, 27Al-MAS NMR, IR and Raman spectroscopies. Both Tg and TEC decreased with increase of the exchange ratio, but Tg was still above the ion-exchange temperature of 400°C even for the fully exchanged sample. The 29Si- and 27Al-MAS NMR spectra were mostly unchanged and no sign of the structural alteration of the glass network was observed. On the other hand, the vibrational spectra showed remarkable peak shifts depending on the exchange ratio. From these structural results, it was found that when the exchange ratio was low, the introduced Ag+ ions were stabilized at the non-bridging oxygen (NBO) site, and then Na+ ions in AlØ4 site were exchanged by Ag+ ions after full replacement of NBO sites, where Ø represents the bridging oxygen.  相似文献   

11.
The 11B NMR spectra of xRb2S+(1−x)B2S3 glasses in the range 0x0.75 and of xCs2S+(1−x)B2S3 glasses in the range 0x0.60 are reported. The addition of Rb2S to B2S3 creates on average approximately two and one-half tetrahedral borons for each added sulfur ion, whereas it is found that the addition of Cs2S creates approximately 2 tetrahedral borons for each added sulfur ion. This behavior while more similar to that seen in the alkali borate glasses, contrasts that seen in the Na and K thioborate glasses, where six to eight and three, respectively, tetrahedral borons are formed for every sulfide anion added to the glass. These findings are supported by the IR and 11B NMR spectra of the di-thioborate polycrystals (c-Rb2S:2B2S3 and c-Cs2S:2B2S3) whose structures appear to be comprised of two BS4 tetrahedrals and two BS3 trigonals (N40.5) like that in the alkali di-borate phases for both Rb and Cs. Unlike the 11B NMR resonances of the sodium thioborate glasses where a single sharp line is observed for the tetrahedral boron site and a single quadrupolar broadened line is observed for all the trigonal sites, a third resonance line is observed at high alkali fractions for the rubidium and cesium thioborate glasses. This new structural feature may arise from asymmetric MBS2 (meta-thioborate groups) or tetrahedral boron groups possessing a non-bridging sulfur.  相似文献   

12.
Glasses in the quasi-binary system (As4S6)x(P4S10)1−x x = 0.1, …, 1.0, are produced and studied by thermal analysis, X-ray, and Raman spectroscopy. The phase diagram of the system and the critical cooling rate for glass formation both have their maximum at x = 0.5, corresponding to the compound As2P2S8; the X-ray structure of recrystallized samples can be described as a sum of the As2P2S8 (x = 0.5)- and the P4S10-structure (As4S6 not visible); Raman spectra of the glasses are again sums of As2P2S8- and As4S6/P4S10-spectra. All these observations support the assumption that a stable building block corresponding to the 1:1 compound As2P2S8 and surplus As4S6 (or P410) are the essential elements of the structure in the glasses.  相似文献   

13.
The colorless and transparent glasses in the Al2O3---B2O3---SiO3 system with high B2O3 and SiO2 content were prepared from gels at low temperature. Their IR spectra not only revealed the evolution of the gel to glass conversion, but also showed that the formation of mixed bonds in the glasses obtained did not show any effect due to the B2O3 content. The accuracy of the glass composition is dependent upon the SiO2/B2O3 molar ratio. The higher the ratio, the less the deviation of the analyzed compositions of the resulting glasses from their original calculated values. It is obvious that the higher the ratio, the lower the thermal expansion coefficient and the higher the transformation temperature of the glass, and the temperature at which the thermal contraction reaches an equilibrium is higher.  相似文献   

14.
The infrared absorption spectra of glasses in the NaPO3---ZnCl2 system were studied in the range of 4000−350 cm−1. The results were interpreted using a local mode approach based on existing frequency charts. A continuous structural breakdown of the glass structure occurs upon addition of ZnCl2 to the NaPO3 polymer, with a consequent decrease in its chain length. The actual structure of the chlorophosphate glasses is discussed on the basis of possible anionic groups present. There is evidence for the occurrence of mixed oxychloride coordination shells. The density and glass transition temperature of the glasses were also determined.  相似文献   

15.
The conditions under which selective epitaxial growth (SEG) is achieved in UHV-CVD with Si2H6 are determined by the amount of Si2H6 molecules being supplied, and there is a critical gas supply amount (Fc) beyond which SEG will break down and lose its selectivity. The value of Fc is itself determined by two factors, growth temperature and the material used for masking, i.e. SiO2, Si3N4. We found that this limiting factor of Fc was increased through the addition of a small amount of Cl2, and that after such addition, the resulting decrease in growth rate is minimal.  相似文献   

16.
Qi Yafan  He Li 《Journal of Non》1986,80(1-3):527-532
Glass formation in the P2O5---WO3---K2O---Al2O3 system was investigated and the glass-forming regions are presented.

the properties of the glasses in the P2O5---WO3---K2O---Al2O3 system (Al2O3 8 mol.%) are reported.

The colouration of glass was studied. It was found that W5+ ions make glass blue.

Infrared spectra were measured by means of making KBr pills. Results of the investigation suggest that P---O---P, P---O---W, and W---O---W bonds form a continuous network in the phosphate glasses. So we suggest that tungsten trioxide is a glass former.  相似文献   


17.
J.W Park  Haydn Chen 《Journal of Non》1980,40(1-3):515-525
The infrared absorption spectra of sodium-disilicate glasses containing various amounts of Fe2O3 ([Na2O · 2 SiO2]1−x [Fe2O3]x, where X = 0.05, 0.1 and 0.2) were investigated in the wavenumber range from 200–2000 cm−1. The addition of Fe2O3 to the sodium-disilicate glass does not seem to introduce any new absorption band as compared with the spectrum of a pure sodium-disilicate glass; nevertheless, a general shift of the existing absorption bands toward lower wavenumbers is observed. The amount of shift is, in fact, proportional to the content of Fe2O3 in the glass. This observation is consistent with the recently proposed structural model for the bonding of Fe3+ ions in the iron-sodium-silicate glass system.

Annealing of 20 mol% iron oxide glasses at 550 and 580°C produced an extra sharp infrared absorption peak at about 610 cm−1 wavenumber. This new peak is believed to be related to the crystallized particles of the glass as concluded from both a scanning electron micrograph and an electron diffraction pattern.  相似文献   


18.
This paper reports the polarized Raman spectra of three forms of vitreous GeO2: the pure glass, neutron irradiated pure glass and unirradiated Ge-rich glass of composition Ge1.1O2. The data reveals that the line seen at 520 cm−1 in the pure glass is due to a network defect that is not a Ge---Ge bond and very probably also not an O---O bond. Comparison with spectra of fused silica suggests that the 606 cm−1 defect line seen in v-SiO2 is not due to Si---Si or O---O bonds.  相似文献   

19.
Sun Yuzhen  Su Youan  He Baoye 《Journal of Non》1986,80(1-3):335-340
The influence of the mixed alkali effect on the chemical durability of Na2O---TiO2---SiO2 glasses during substitution of K2O for Na2O in 21Na2O---26TiO2---53SiO2 glasses was investigated. The best chemical durability was found at K2O/Na2O = 2.5 where the minimum was close to K+ ions of larger size. It was shown that the water corrosion process of the system was predominantly controlled by both the mobility and the exchange function of K+ ions resulting in the generation of a titanium-rich and silicon-rich layer at the surface. The mixed alkali effect can therefore be applied to lower the rate of water corrosion and increase chemical durability so that optical glasses with higher chemical durability can be obtained.  相似文献   

20.
The high viscosity in melts of the Li2O---B2O3 system makes it very difficult to grow large crystals of lithium triborate. The viscosity and IR characteristics of molten li2O---B2O3 system are reported in this paper. When the temperature increases the viscosity of li2O---B2O3 system decreases and follows an Arrhenius-type relationship. With an increasing 13203 ratio in Li2O---B2O3 melts, the viscosity rises gradually to a maximum with a composition Li2O: 3.513203 then it falls rapidly. In order to find active agents to reduce the viscosity, Na2O, NaCl, LiF, P205, M003, W03 etc oxides were added to Li2O---B2O3 samples respectively and investigated using the orthogonal method. The experimental results show that the addition of acidic oxides can significantly decrease the viscosity in the Li2O---B2O3 system. For Li2O: 4.513203, an ideal additive agent is 20wt% Li2O:: 2MoO3. Near the composition for crystal growth, the percentage reduction of viscosity is 62.2%. The IR spectra of Li2O---B2O3 system revealed that the BO4/NO3 ratio is reduced in the melt using Li2O: 2MoO3 as an additive. It is proposed that the M003 reduced the concentration of bridging oxygen atoms of BO4. The change of structure explains the decline in the viscosity. In the crystal structures of lithium triborate, the matrix spaces are so small that larger other cations than Li+ are very difficult to enter the crystal matrix. So the use of additive agents to reduce the viscosity is a possible method if no new phase appears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号