首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We derived a mathematical expression for the temporal evolution of the number of particles due to shear coagulation, covering the later stage by expanding the initial stage approximation to take into account the formation of floc structure. In the derivation, it is assumed that flocculation proceeds through binary collisions between identical fractal flocs. The capture efficiency between flocs is calculated on the basis of trajectory analysis, which is determined by viscous hydrodynamic interaction between flocs and van der Waals attractive forces between two primary particles located at colliding points of flocs. The validity of the derived equation was tested by a coagulation experiment using polystyrene sulfate latex particles under conditions of rapid coagulation. The experiment was carried out in a laminar Couette flow generated in the gap between two concentric cylinders. Careful and direct observation of flocculation under microscopy provided the data on the fractal dimension as well as the temporal evolution of number concentration of flocs. The measured rate of coagulation gradually increases in accordance with the formation of the fractal structure of flocs. This behavior agreed very well with the prediction based on the derived equation.  相似文献   

2.
3.
The nonlinear rheological version of our barrier hopping theory for particle-polymer suspensions and gels has been employed to study the effect of steady shear and constant stress on the alpha relaxation time, yielding process, viscosity, and non-Newtonian flow curves. The role of particle volume fraction, polymer-particle size asymmetry ratio, and polymer concentration have been systematically explored. The dynamic yield stress decreases in a polymer-concentration- and volume-fraction-dependent manner that can be described as apparent power laws with effective exponents that monotonically increase with observation time. Stress- or shear-induced thinning of the viscosity becomes more abrupt with increasing magnitude of the quiescent viscosity. Flow curves show an intermediate shear rate dependence of an effective power-law form, becoming more solidlike with increasing depletion attraction. The influence of polymer concentration, particle volume fraction, and polymer-particle size asymmetry ratio on all properties is controlled to a first approximation by how far the system is from the gelation boundary of ideal mode-coupling theory (MCT). This emphasizes the importance of the MCT nonergodicity transition despite its ultimate destruction by activated barrier hopping processes. Comparison of the theoretical results with limited experimental studies is encouraging.  相似文献   

4.
The effect of ionic strength on the rheology and microstructure of Cellulose nanocrystals (CNC) aqueous suspensions are studied over a broad range of CNC (3–15 wt%) and NaCl concentrations (0–15 mM), using polarized optical microscopy combined with rheometry. The CNC suspensions are isotropic at low concentration and form chiral nematic liquid crystalline structure above a first critical concentration and gel above a second critical one. It has been shown that for isotropic CNC suspensions, increasing the ionic strength of the system up to 5 mM NaCl concentration weakens the electro-viscous effects and thus reduces the viscosity of these suspensions. For biphasic samples, which contain chiral nematic liquid crystal domains, increasing the ionic strength up to 5 mM NaCl concentration decreases the size of the chiral nematic domains, and leads the viscosity of the samples at low shear rates to increase. On the other hand, at high shear rates, where all the ordered domains are broken, the viscosity decreases with NaCl addition. For gels, the addition of NaCl up to 5 mM weakens the gel structure and decreases the viscosity. Further addition of NaCl (10 and 15 mM NaCl concentrations) results in extensive aggregation and de-stabilizes the CNC suspensions.  相似文献   

5.
We conduct rheological characterization of nanofibrillated cellulose (NFC) suspensions, a highly non-Newtonian complex fluid, at several concentrations. Special care is taken to cope with the prevalent problems of time scale issues, wall depletion and confinement effects. We do this by combining the wide-gap vane geometry, extremely long measurement times, and modeling. We take into account the wide-gap related stress heterogeneity by extending upon mainstream methods and apply a gap correction. Furthermore, we rationalize the experimental data through a simple viscous structural model. With these tools we find that, owing to the small size of the particles subjected to Brownian motion, the NFC suspensions exhibit a critical shear rate, where the flow curve experiences a turning point. This makes the steady state of these suspensions at low shear rates non-unique. To optimize various mixing and pumping applications, such history dependent tendency of NFC suspensions to shear band needs to be taken into account.  相似文献   

6.
Short-time dynamic properties of concentrated suspensions of colloidal core-shell particles are studied using a precise force multipole method which accounts for many-particle hydrodynamic interactions. A core-shell particle is composed of a rigid, spherical dry core of radius a surrounded by a uniformly permeable shell of outer radius b and hydrodynamic penetration depth κ(-1). The solvent flow inside the permeable shell is described by the Brinkman-Debye-Bueche equation, and outside the particles by the Stokes equation. The particles are assumed to interact non-hydrodynamically by a hard-sphere no-overlap potential of radius b. Numerical results are presented for the high-frequency shear viscosity, η(∞), sedimentation coefficient, K, and the short-time translational and rotational self-diffusion coefficients, D(t) and D(r). The simulation results cover the full three-parametric fluid-phase space of the composite particle model, with the volume fraction extending up to 0.45, and the whole range of values for κb, and a/b. Many-particle hydrodynamic interaction effects on the transport properties are explored, and the hydrodynamic influence of the core in concentrated systems is discussed. Our simulation results show that for thin or hardly permeable shells, the core-shell systems can be approximated neither by no-shell nor by no-core models. However, one of our findings is that for κ(b - a) ? 5, the core is practically not sensed any more by the weakly penetrating fluid. This result is explained using an asymptotic analysis of the scattering coefficients entering into the multipole method of solving the Stokes equations. We show that in most cases, the influence of the core grows only weakly with increasing concentration.  相似文献   

7.
Using the model of the Full Optimized Reaction Space including the Intra-Atomic Correlation Correction, binding energies and other electronic properties have been calculated for several states of a number of diatomic molecules. In most cases this theoretical approach yields results agreeing with experimental values to within 0.2 eV. The investigation covers the molecules BH, CH, NH, OH, FH, N2, O2, F2.  相似文献   

8.
A modified expression for the Smoluchowski solution for the temporal evolution of the number concentration of flocs subject to Brownian coagulation is proposed, taking into account the effect of the growth of floc structure. In the proposed equation, the effect is expressed as a decrease of free volume in the liquid phase due to the increase of effective floc volume in accordance with the progress of coagulation. The validity of the proposed equation was tested by coagulation experiments using polystyrene latex particles. Direct counting of the number of flocs under microscopy provided accurate data on the temporal evolution of the number concentration of flocs. The obtained rate gradually increases in accordance with the growth of floc structure. This behavior agreed exactly with the prediction based on the proposed equation.  相似文献   

9.
The structure and flow behaviour of binary mixtures of Pluronic block copolymers P85 and P123 is investigated by small-angle scattering, rheometry and mobility tests. Micelle dimensions are probed by dynamic light scattering. The micelle hydrodynamic radius for the 50/50 mixture is larger than that for either P85 or P123 alone, due to the formation of mixed micelles with a higher association number. The phase diagram for 50/50 mixtures contains regions of cubic and hexagonal phases similar to those for the parent homopolymers, however the region of stability of the cubic phase is enhanced at low temperature and concentrations above 40 wt%. This is ascribed to favourable packing of the mixed micelles containing core blocks with two different chain lengths, but similar corona chain lengths. The shear flow alignment of face-centred cubic and hexagonal phases is probed by in situ small-angle X-ray or neutron scattering with simultaneous rheology. The hexagonal phase can be aligned using steady shear in a Couette geometry, however the high modulus cubic phase cannot be aligned well in this way. This requires the application of oscillatory shear or compression.  相似文献   

10.
11.
Rheology of microfibrillated cellulose (MFC) water suspensions was characterized with a rotational rheometer, augmented with optical coherence tomography (OCT). To the best of the authors’ knowledge, this is the first time the behavior of MFC in the rheometer gap was characterized by this real-time imaging method. Two concentrations, 0.5 and 1 wt% were used, the latter also with 10?3 and 10?2 M NaCl. The aim was to follow the structure of the suspensions in a rotational rheometer during the measurements and observe wall depletion and other factors that can interfere with the rheological results. The stepped flow measurements were performed using a transparent cylindrical measuring system and combining the optical information to rheological parameters. OCT allows imaging in radial direction from the outer geometry boundary to the inner geometry boundary making both the shear rate profile and the structure of the suspension visible through the rheometer gap. Yield stress and maximum wall stress were determined by start-up of steady shear and logarithmic stress ramp methods and they both reflected in the stepped flow measurements. Above yield stress, floc size was inversely proportional to shear rate. Below the yield stress, flocs adhered to each other and the observed apparent constant shear stress was controlled by flow in the depleted boundary layer. With higher ionic strength (10?2 M NaCl), the combination of yield stress and wall depletion favored the formation of vertical, cylindrical, rotating floc structures (rollers) coupled with a thicker water layer originating at the suspension—inner cylinder boundary at low shear rates.  相似文献   

12.
Applied Biochemistry and Biotechnology - The impeller viscometer technique is frequently used to characterize the rheology of filamentous suspensions in order to avoid difficulties encountered with...  相似文献   

13.
The Drude model for treating the interaction of excess electrons with polar molecules is extended to calculate continuum functions and to evaluate photodetachment cross sections. The approach is applied to calculate the cross sections for photodetachment of dipole-bound electrons from HCN(-) and HNC(-). In addition, an adiabatic model separating the angular and radial degrees of freedom of the excess electron is introduced and shown to account in a qualitative manner for the cross sections.  相似文献   

14.
Surface shear viscosity of food emulsifiers may contribute appreciably to the long-term stability of food dispersions (emulsions and foams). In this work we have analyzed the structural, topographical, and shear characteristics of a whey protein isolate (WPI) and monoglyceride (monopalmitin and monoolein) mixed films spread on the air-water interface at pH 7 and at 20 degrees C. The surface shear viscosity (etas) depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity varies greatly with the surface pressure. In general, the greater the surface pressure, the greater are the values of etas. The values of etas for the mixed WPI-monoolein monolayer were more than one order of magnitude lower than those for a WPI-monopalmitin mixed film, especially at the higher surface pressures. At higher surface pressures, collapsed WPI residues may be displaced from the interface by monoglyceride molecules with important repercussions on the shear characteristics of the mixed films. A shear-induced change in the topography and a segregation between domains of the film forming components were also observed. The displacement of the WPI by the monoglycerides is facilitates under shear conditions, especially for WPI-monoolein mixed films.  相似文献   

15.
The shear and dilatational rheology of condensed interfacial layers of the water-insoluble surfactant sorbitan tristearate at the air/water interface is investigated. A new interfacial shear rheometer allows measurements in both stress- and strain-controlled modes, providing comprehensive interfacial rheological information such as the interfacial dynamic shear moduli, the creep response to a stress pulse, the stress relaxation response to a strain step, or steady shear curves. Our experiments show that the interfacial films are both viscoelastic and brittle in nature and subject to fracture at small deformations, as was supported by in-situ Brewster angle microscopy performed during the rheological experiments. Although any large-deformation test is destructive to the sample, it is still possible to study the linear viscoelastic regime if the deformations involved are controlled carefully. Complementary results for the dilatational rheology in area step compression/expansion experiments are reported. The dilatational behavior is predominantly elastic throughout the frequency spectrum measured, whereas the layers exhibit generalized Maxwell behavior in shear mode within a deformation frequency regime as narrow as two decades, indicating the presence of additional relaxation mechanisms in shear as opposed to expansion/compression. If the transient rheological response from stress relaxation experiments is considered, then the data can be described well with a stretched exponential model both in the shear and dilatational deformations.  相似文献   

16.
In this work we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology), to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of milk protein (beta-casein, caseinate, and beta-lactoglobulin) and monoglyceride (monopalmitin and monoolein) mixed films spread and adsorbed on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (eta(s)) varies greatly with the surface pressure (pi). In general, the greater the pi values, the greater were the values of eta(s). Moreover, the eta(s) value is also sensitive to the miscibility and/or displacement of film-forming components at the interface. At surface pressures lower than that for protein collapse, protein and monoglyceride coexist at the air-water interface. At surface pressures higher than that for the protein collapse, a squeezing of collapsed protein domains by monoglycerides was deduced. Near to the collapse point, the mixed film is dominated by the presence of the monoglyceride. Different proteins and monoglycerides show different interfacial structure, topography, and shear viscosity values, confirming the importance of protein and monoglyceride structure in determining the interfacial characteristics (interactions) of mixed films. The values of eta(s) are lower for disordered (beta-casein or caseinate) than for globular (beta-lactoglobulin) proteins and for unsaturated (monoolein) than for saturated (monopalmitin) monoglycerides in the mixed film. The displacement of the protein by the monoglycerides is facilitated under shear conditions.  相似文献   

17.
Thickness shear mode resonators are capable of registering small changes in the thickness and viscoelastic properties of ultrathin films attached to their surface. It was found that it is possible to monitor the deformation of surface-bound giant liposomes by applying an electric field with small amplitudes. Changes in the apparent height of attached vesicles in the nanometer range were easily detected as a function of lipid composition. Increasing the bending modulus by adding cholesterol results in a significantly reduced deformation from 16.8 nm (5% cholesterol) down to 3.2 nm (20% cholesterol), rendering this new method a robust and sensitive tool to detect the bending elasticity of liposomes on small length scales. Deformation could be further suppressed by adding anchor groups (biotinylated lipids), resulting in a strongly flattened liposome on an avidin-coated resonator.  相似文献   

18.
19.
It is shown that the lack of a characteristic time and the associated time-scale invariance serve to plac e severe restrictions on the rheology of a simple material. i.e. on the general form of the functional relating stress to deformation history.The rate-independent material proposed by Pipkin and Rivlin in 1965 as a model of plasticity in solids is found to arise as an important special case of a time-scale invariant material, and it is shown how their idea of rate-independent functionals can be used to construct rheological representations for more general materials, including fluids without charcateristic time. It is also demonstrated that such idealized fluids, which exhibit mathematically singular viscometric behavior, should provide a faithful continuum model for the rheology of rigid particle suspensions in Newtonian liquids (the generalized Einstein problem) and, as such, may provide asymptotic models for real particle susension, such as colloids, in the “flow-dominated” limit of large Deborah number.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号