首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large-eddy simulations (LES) are used to investigate the modifications of wake dynamics and turbulence characteristics behind a circular cylinder placed near a wall for varying gap-to-diameter (G/D) ratios (where G signifies the gap between the wall and the cylinder, and D the cylinder diameter). The three-dimensional (3-D), time-dependent, incompressible Navier–Stokes equations with a dynamic subgrid-scale model are solved using a symmetry-preserving finite-difference scheme of second-order spatial and temporal accuracy. The immersed boundary (IB) method is employed to impose the no-slip boundary condition on the cylinder surface. Flow visualizations along with turbulence statistics are presented to gain insight into the flow structures that are due to interaction between the shear layers and the approaching boundary layer. Apart from the vortex shedding mechanism, the paper illustrates the physics involving the shear layer transition, stretching, breakdown and turbulence generation, either qualitatively or quantitatively, in the presence of a wall for a Reynolds number of Re=1440 (based on D and the inlet free-stream velocity U).  相似文献   

2.
The fine structure of the flow and the characteristics of the principal types of vortex structures in the wake of a sphere moving uniformly and horizontally in an exponentially stratified fluid have been experimentally investigated.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 82–90, July–August, 1991.The authors are grateful to G. Yu. Stepanov for his careful analysis of the first version of this article and his valuable comments.  相似文献   

3.
4.
A novel Stereo PIV technique, with improvements over other techniques, is presented. The key feature of the new technique is the direct measurement of calibration data at each point in space on the measurement grid, so that no interpolation is necessary. This is achieved through the use of a contiguous target which can be analysed using standard PIV processing software. The technique results in three-dimensional measurements of high accuracy with a significantly simpler calibration phase. This has the benefit of improving ease of use and reducing the time taken to obtain data. Thorough error analysis shows that while previously-described error trends are correct, additional facets of the technique can be optimised to allow highly accurate results. The new technique is rigorously validated here using pure translation and rotation test cases. Finally, the technique is used to measure a complex swirling flow within a cylindrical vessel.  相似文献   

5.
6.
Vortex formation mechanisms in the wake behind a sphere for 200 < Re < 380   总被引:1,自引:0,他引:1  
Direct numerical simulation and visualization of three-dimensional separated flows of a homogeneous incompressible viscous fluid are used to comprehensively describe different mechanisms of vortex formation behind a sphere at moderate Reynolds numbers (200 ≤ Re ≤ 380). For 200 < Re ≤ 270 a steady-state rectilinear double-filament wake is formed, while for Re > 270 it is a chain of vortex loops. The three unsteady periodic flow patterns corresponding to the 270 < Re ≤ 290, 290 < Re ≤ 320, and 320 < Re ≤ 380 ranges are characterized by different vortex formation mechanisms. Direct numerical simulation is based on the Meranzh (SMIF) method of splitting in physical factors with an explicit hybrid finite-difference scheme which possesses the following properties: secondorder approximation in the spatial variables, minimal scheme viscosity and dispersion, and monotonicity. Two different vortex identification techniques are used for visualizing the vortex structures within the wake.  相似文献   

7.
8.
9.
We investigate the onset and development of vortical flow disturbances introduced into the wake of a horizontally fixed flat-plate by means of the controlled motion of a trailing edge flap. The vibrating mechanics of the flap allows for the introduction of both impulsive and harmonic weak amplitude velocity disturbances which are propagated downstream into the wake flow of the flat-plate. Quantitative experimental and numerical predictions of both steady and unsteady wake flow velocity resulting from different flapping frequencies are made at low Reynolds numbers (Re < 104). Frequency response tests of the wake confirmed the existence of two dominant frequencies where the wake flow organises with a particular arrangement of downstream moving vortex structures. Numerical predictions of steady (unforced) and forced wake velocity profiles and kinetic energy profiles are in good agreement with the experimental results. In order to understand practical implications of the dominant vortex structures in scalar transport, we have extended the numerical part of the study solving for the concentration equation of a passive scalar being injected in particular regions of the physical domain. A spatial correlation between the trajectory of vortex structures and the scalar concentration downstream the wake is observed. Moreover, the onset of tip vortex structures produced during the forcing cycle seems to be responsible of a local increase of scalar concentration near the span wise flap ends.  相似文献   

10.
The air ventilation system in wide-body aircraft cabins provides passengers with a healthy breathing environment. In recent years, the increase in global air traffic has amplified contamination risks by airborne flu-like diseases and terrorist threats involving the onboard release of noxious materials. In particular, passengers moving through a ventilated cabin may transport infectious pathogens in their wake. This paper presents an experimental investigation of the wake produced by a bluff body driven through a steady recirculating flow. Data were obtained in a water facility using particle image velocimetry and planar laser induced fluorescence. Ventilation attenuated the downward convection of counter-rotating vortices produced near the free-end corners of the body and decoupled the downwash mechanism from forward entrainment, creating stagnant contaminant regions.  相似文献   

11.
12.
The vortex wakes of obstacles (circular cylinder and sphere) moving through a linearly stratified fluid have been investigated, by means of flow visualization, at Reynolds numbers smaller than 800 and non-dimensional buoyancy frequencies smaller than 6. Vortex shedding from a horizontally suspended circular cylinder is suppressed when the fluid is stratified. The wake of a sphere is affected by lee waves when the Reynolds number exceeds about 200.  相似文献   

13.
Influence of wall proximity on characteristics of the wake behind a two-dimensional square cylinder was experimentally studied in the present work. A low-speed recirculation water channel was established for the experiment; the Reynolds number based on the free-stream velocity and cylinder width (D) was kept at ReD = 2250. Four cases with different gap width, e.g., G/D = 0.1, 0.2, 0.4 and 0.8, were chosen for comparison. Two experimental techniques, e.g., the standard PIV with high image-density CCD camera and TR-PIV with a high-speed camera were employed in measuring the wake field, enabling a comprehensive view of the time-averaged wake pattern at high spatial resolution and the instantaneous flow field at high temporal resolution, respectively. For the four cases, the difference in spatial characteristics of the wake in the vicinity of the plane wall was analyzed in terms of the time-averaged quantities measured by the standard PIV, e.g., the streamline pattern, the vector field, the streamwise velocity fluctuation intensity and the reverse-flow intermittency. The proper orthogonal decomposition (POD) method was extensively used to decompose the TR-PIV measurements, giving a close-up view of the energetic POD modes buried in the wake. The low-order flow model of the wake at G/D = 0.8 and 0.4 was constructed by using the linear combination of the first two POD modes and the time-mean flow field, which reflected well the vortex shedding process in the sense of the phase-dependent patterns. The intermittent appearance of the weakly separated region near the wall was found at G/D = 0.4. On going from G/D = 0.8 to 0.4, the remarkable variation of the instantaneous wake in the longitudinal direction confirmed that the wall constraint stretches the vortices in the plane of the wall and transfers the energy to the longitudinal component at the expense of the lateral one.  相似文献   

14.
15.
The unsteady wake of a flat disk (diameter D) located at a distance of H from a flat plate has been experimentally investigated at a Reynolds number Re D  = 1.3 × 105. Tests have been performed for a range of gap ratio (H/D), spanning from 0.3 to 1.75. The leading edge of the flat plate is either streamlined (elliptical) or blunt (square). These configurations have been studied with PIV, high speed PIV and multi-arrayed off-set fluctuating pressure measurements. The results show a progressive increase of the complexity of the flow and of the interaction as the gap ratio decreases. For large values of H/D (1.75), the interaction is weak and the power spectral densities (PSD) exhibit a strong peak associated with the vortex shedding events (St = 0.131) – St = fD/U is the Strouhal number. For lower values of H/D (0.75), the magnitude of the wall fluctuating pressure increases significantly. A large band contribution is associated with the unsteady wake structure and turbulence. A slight increase of the shedding frequency (St = 0.145) is observed. A critical value of the gap ratio (about 0.35) has been determined. Below this critical value, a three-dimensional separated region is observed and the natural vortex shedding process is very strongly altered. These changes induce a great modification of the fluctuating pressure at the wall. Each interaction reacts in a different way to perturbed upstream conditions. In particular, the disk is an overwhelming perturbation for the lowest H/D value studied here and the relative influence of the upstream turbulence on the wall fluctuating pressure below the near wake region is moderate.  相似文献   

16.
Heated sphere anemometers (HSA) are the most widely used instruments for low-velocity measurements in the heating, ventilation and air-conditioning industry. Experiments were conducted to characterise the flowfield around the spherically shaped sensor and upper probe assembly of a HSA. Particle image velocimetry was the main quantitative experimental technique. Measurements of the flowfield around a HSA probe and a 2:1 scaled-up model were performed in a uniform isothermal axisymmetrical jet air flow at Re around 350, based on sensor diameter, for different pitch angle incident flows. Additionally, extensive flow visualisation studies around scaled-up models of the HSA probe were performed. Received: 24 April 2001/Accepted: 16 December 2001  相似文献   

17.
Internal waves generated by the turbulent wake of a sphere   总被引:1,自引:0,他引:1  
Internal waves generated by the turbulent wake of a sphere travelling horizontally through a linearly stratified fluid were studied using shadowgraph and particle-streak photography. The Reynolds and internal Froude number ranges considered were 2,000 Re 12,900 and 2.0 Fi 28.0, respectively. Two quite distinct flow regimes based on the structure of the turbulent wake were identified. In one, the wake is characterized by large-scale coherent structures. In the other, the wake, as viewed on a side-view shadowgraph, grows in a roughly symmetric fashion to a maximum height and then collapses slowly; such flows are termed the smallscale structures regime.Wave lengths and maximum wave heights of the internal waves were measured as functions of Nt and Fi, where N is the Brunt-Väisälä frequency and t the time. It was found that the wave lengths scale well with the streamwise dimension of the spiralling coherent structures. The maximum amplitude of the internal waves were found to scale with the vertical dimension of the turbulent wake, upon varying the internal Froude number.  相似文献   

18.
Recently there has been a new surge of interest in three-dimensional wake patterns, from both an experimental and analytical standpoint. One of the central discoveries is that the patterns of vortex shedding are dependent on the specific end conditions of a long cylinder span. However, a number of outstanding questions have remained unanswered, in part because techniques had not existed to control such patterns in a continuous fashion and from outside a test facility. In the present work, we have devised a method to control the end conditions of a cylinder span by non-mechanical and continuously-variable means, namely by the use of end suction. The technique allows a continuous variation of end conditions and admits transient or impulsive control. With the method, the classical steady-state patterns, such as parallel or oblique shedding or the chevron patterns are simply induced. These experiments demonstrate that the wake, at a given Reynolds number, is receptive to a continuous (but limited) range of oblique shedding angles (), rather than to discrete angles. There is excellent agreement in these results with the cos formula for collapsing oblique-shedding frequencies onto a single universal frequency curve. The use of suction has avoided the grossly unsteady motions at the ends of the cylinder span brought about by the wakes of mechanical end manipulators, and we show that the laminar shedding regime exists up to Reynolds numbers (Re) of 205. The surprisingly large disparity among reported measurements of criticalRe for wake transition (Re=140–200), over the last forty years, can now be explained in terms of spanwise end contamination.The control technique has also allowed experiments to be performed, which have resulted in the discovery of new phenomena such as phase shocks and phase expansions. A major difference between these phenomena is that phase shocks (involving regions of straight vortices) translate spanwise at constant speed, crossing the complete span in a finite time, whereas a phase expansion (involving curved vortices) requires an infinite time to complete its development across the span. These transient wake patterns are well illustrated using a simple model, based on experimental measurements, that thenormal wavelength for oblique or parallel vortices remains constant. However, a detailed and close comparison between our experimental results and those results from analytical modelling of the wake using Ginzburg-Landau modelling (in collaboration with Peter Monkewitz at Lausanne) is presently underway. These equations yield a Burger's equation for the spanwise wavenumber (or phase gradient), from which both (phase) shocks and expansions are well-known solutions.
Sommario Recentemente è rinato l'interesse per i modelli tridimensionali di scie, sia da un punto di vista sperimentale che da uno analitico. Una delle scoperte centrali è che le modalità di produzione dei vortici sono dipendenti dalle condizioni agli estremi di un lungo cilindro. Nel presente lavoro, è stato formulato un metodo per controllare le condizioni finali agli estremi di un cilindro per mezzo di variabili continue di significato non-meccanico, cioè per mezzo dell'aspirazione agli estremi. La tecnica permette una variazione continua delle condizioni agli estremi ed ammette controllo transitorio od impulsivo. Con questo metodo sono semplicemente indotti i classici modelli a stato fissato, come anche quelli che prevedono produzioni di vortici parallele od oblique o quellichevron. Questi esperimenti dimostrano che la scia, ad un dato numero di Reynolds, ammette una distribuzione continua (ma limitata) di angoli per distribuzioni oblique, piuttosto che una discreta. In questi risultati c'è un eccellente accordo con la formula del coseno per frequenze di produzioni oblique e collassanti su di una curva di frequenzauniversale. L'uso dell'aspirazione ha evitato i moti largamente instabili alle estremità del cilindro, provocati dalle scie delle parti terminali dei manipolatori, e si osserva che il regime laminare diffondente esiste oltre un numero di Reynolds pari a 205. La sorprendentemente larga disparità tra le misure di numeri di Reynolds critici, riportati per transizioni di scia (Re=140÷200) durante gli ultimi quattro anni, può essere ora spiegata in termini di contaminazione della estensione della lunghezza del cilindro.
  相似文献   

19.
20.
Accurate numerical simulations of vortex rings impinging on flat boundaries have revealed the same features observed in the experiment of Walkeret al. (1987). They observed atRe v >1250 the formation of azimuthal instabilities in the secondary ring during its compression within the primary ring. In the present numerical simulation the number of waves agrees very well with those observed in the experiment. The distributions of the vorticities together with the distribution of each term in the vorticity equations give insights on the formation of azimuthal instabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号